login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A004190 Expansion of 1/(1-11*x+x^2). 13
1, 11, 120, 1309, 14279, 155760, 1699081, 18534131, 202176360, 2205405829, 24057287759, 262424759520, 2862615066961, 31226340977051, 340627135680600, 3715672151509549, 40531766530924439, 442133759688659280 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Chebyshev or generalized Fibonacci sequence.

This is the m=13 member of the m-family of sequences S(n,m-2) = S(2*n+1,sqrt(m))/sqrt(m). The m=4..12 (nonnegative) sequences are: A000027, A001906, A001353, A004254, A001109, A004187, A001090, A018913 and A004189. The m=1..3 (signed) sequences are A049347, A056594, A010892.

All positive integer solutions of Pell equation b(n)^2 - 117*a(n)^2 = +4 together with b(n+1)=A057076(n+1), n>=0. - Wolfdieter Lang, Aug 31 2004

For positive n, a(n) equals the permanent of the tridiagonal matrix of order n with 11's along the main diagonal, and i's along the superdiagonal and the subdiagonal (i is the imaginary unit). - John M. Campbell, Jul 08 2011

a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,...,10}. - Milan Janjic, Jan 25 2015

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..900

S. Falcon, Generalized Fibonacci Sequences Generated from a k-Fibonacci Sequence, Journal of Mathematics Research Vol. 4, No. 2; April 2012. - From N. J. A. Sloane, Sep 22 2012

R. Flórez, R. A. Higuita, A. Mukherjee, Alternating Sums in the Hosoya Polynomial Triangle, Article 14.9.5 Journal of Integer Sequences, Vol. 17 (2014).

A. F. Horadam, Special properties of the sequence W_n(a,b; p,q), Fib. Quart., 5.5 (1967), 424-434. Case a=0,b=1; p=11, q=-1.

M. Janjic, On Linear Recurrence Equations Arising from Compositions of Positive Integers, 2014; http://matinf.pmfbl.org/wp-content/uploads/2015/01/za-arhiv-18.-1.pdf

Tanya Khovanova, Recursive Sequences

W. Lang, On polynomials related to powers of the generating function of Catalan's numbers, Fib. Quart. 38 (2000) 408-419. Eq.(44), lhs, m=13.

Index entries for sequences related to Chebyshev polynomials.

Index entries for linear recurrences with constant coefficients, signature (11,-1).

FORMULA

Recursion: a(n) = 11*a(n-1)-a(n-2), n >= 1; a(-1)=0, a(0)=1.

a(n)=S(2*n+1, sqrt(13))/sqrt(13) = S(n, 11); S(n, x) := U(n, x/2), Chebyshev polynomials of 2nd kind, A049310.

G.f.: 1/(1-11*x+x^2).

a(n) = ((11+3*sqrt(13))^(n+1)-(11-3*sqrt(13))^(n+1))/(2^(n+1)*3*sqrt(13)). - Rolf Pleisch, May 22 2011

a(n) = Sum_{k, 0<=k<=n} A101950(n,k)*10^k. - Philippe Deléham, Feb 10 2012

Product {n >= 0} (1 + 1/a(n)) = 1/3*(3 + sqrt(13)). - Peter Bala, Dec 23 2012

Product {n >= 1} (1 - 1/a(n)) = 3/22*(3 + sqrt(13)). - Peter Bala, Dec 23 2012

a(n) = sqrt((A057076(n+1)^2 - 4)/117).

a(n) = A075835(n+1)/3 = A006190(2*n+2)/3. - Vladimir Reshetnikov, Sep 16 2016

EXAMPLE

G.f. = 1 + 11*x + 120*x^2 + 1309*x^3 + 14279*x^4 + 155760*x^5 + ...

MAPLE

with(combinat):seq(fibonacci(2*n+2, 3)/3, n=0..20); # Zerinvary Lajos, Apr 20 2008

MATHEMATICA

Join[{a=1, b=11}, Table[c=11*b-a; a=b; b=c, {n, 60}]] (* Vladimir Joseph Stephan Orlovsky, Jan 20 2011*)

CoefficientList[Series[1/(1-11*x+x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Jun 13 2012 *)

Table[Fibonacci[2n + 2, 3]/3, {n, 0, 20}] (* Vladimir Reshetnikov, Sep 16 2016 *)

PROG

(Sage) [lucas_number1(n, 11, 1) for n in xrange(1, 20)] # Zerinvary Lajos, Jun 25 2008

(PARI) Vec(1/(1-11*x+x^2)+O(x^99)) \\ Charles R Greathouse IV, Sep 23 2012

CROSSREFS

Cf. A049310, A004189, A057076.

Sequence in context: A274119 A171316 A081122 * A089707 A223391 A084969

Adjacent sequences:  A004187 A004188 A004189 * A004191 A004192 A004193

KEYWORD

nonn,easy,changed

AUTHOR

N. J. A. Sloane.

EXTENSIONS

Wolfdieter Lang, Oct 31 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified September 25 16:57 EDT 2016. Contains 276540 sequences.