login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A057076 A Chebyshev or generalized Fibonacci sequence. 7
2, 11, 119, 1298, 14159, 154451, 1684802, 18378371, 200477279, 2186871698, 23855111399, 260219353691, 2838557779202, 30963916217531, 337764520613639, 3684445810532498, 40191139395243839, 438418087537149731 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

LINKS

Table of n, a(n) for n=0..17.

P. Bhadouria, D. Jhala, B. Singh, Binomial Transforms of the k-Lucas Sequences and its [sic] Properties, The Journal of Mathematics and Computer Science (JMCS), Volume 8, Issue 1, Pages 81-92; sequence R_3.

S. Falcon, Relationships between Some k-Fibonacci Sequences, Applied Mathematics 5 (2014), 2226-2234

Tanya Khovanova, Recursive Sequences

Index entries for recurrences a(n) = k*a(n - 1) +/- a(n - 2)

Index entries for sequences related to Chebyshev polynomials.

Index entries for linear recurrences with constant coefficients, signature (11,-1).

FORMULA

a(n) = S(n, 11) - S(n-2, 11) = 2*T(n, 11/2) with S(n, x) := U(n, x/2), S(-1, x) := 0, S(-2, x) := -1. S(n, 11)=A004190(n). U-, resp. T-, are Chebyshev's polynomials of the second, resp. first, case. See A049310 and A053120.

G.f.: (2-11x)/(1-11x+x^2).

a(n) = a(-n). - Michael Somos, Apr 25 2003

a(n) = ap^n + am^n, with ap := (11+sqrt(117))/2 and am := (11-sqrt(117))/2.

EXAMPLE

G.f. = 2 + 11*x +119*x^2 + 1298*x^3 + 14159*x^4 + 154451*x^5 + ...

MATHEMATICA

a[0] = 2; a[1] = 11; a[n_] := 11a[n - 1] - a[n - 2]; Table[ a[n], {n, 0, 17}] (* Robert G. Wilson v, Jan 30 2004 *)

a[ n_] := 2 ChebyshevT[ n, 11/2]; (* Michael Somos, May 28 2014 *)

PROG

(PARI) {a(n) = subst( poltchebi(n), x, 11/2) * 2};

(PARI) {a(n) = 2 * poltchebyshev(n, 1, 11/2)}; /* Michael Somos, May 28 2014 */

(PARI) Vec((2-11*x)/(1-11*x+x^2) + O(x^40)) \\ Michel Marcus, Feb 18 2016

(Sage) [lucas_number2(n, 11, 1) for n in range(27)] # Zerinvary Lajos, Jun 25 2008

CROSSREFS

a(n) = sqrt(4+117*A004190(n-1)^2), n>=1.

Sequence in context: A304639 A130222 A197993 * A251663 A118794 A222879

Adjacent sequences:  A057073 A057074 A057075 * A057077 A057078 A057079

KEYWORD

nonn,easy

AUTHOR

Wolfdieter Lang, Oct 31 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 15 00:30 EST 2019. Contains 329988 sequences. (Running on oeis4.)