|
|
A018913
|
|
a(n) = 9*a(n - 1) - a(n - 2) for n>1, a(0)=0, a(1)=1.
|
|
20
|
|
|
0, 1, 9, 80, 711, 6319, 56160, 499121, 4435929, 39424240, 350382231, 3114015839, 27675760320, 245967827041, 2186034683049, 19428344320400, 172669064200551, 1534593233484559, 13638670037160480, 121213437100959761
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
Define the sequence L(a_0,a_1) by a_{n+2} is the greatest integer such that a_{n+2}/a_{n+1}<a_{n+1}/a_n for n >= 0. This is L(1,9).
For n>=2, a(n) equals the permanent of the (n-1)X(n-1) tridiagonal matrix with 9's along the main diagonal, and i's along the superdiagonal and the subdiagonal (i is the imaginary unit). - John M. Campbell, Jul 08 2011
For n>=1, a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,...,8}. - Milan Janjic, Jan 25 2015
Not to be confused with the Pisot L(1,9) sequence, which is A001019. - R. J. Mathar, Feb 13 2016
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Marco Abrate, Stefano Barbero, Umberto Cerruti, Nadir Murru, Polynomial sequences on quadratic curves, Integers, Vol. 15, 2015, #A38.
Andersen, K., Carbone, L. and Penta, D., Kac-Moody Fibonacci sequences, hyperbolic golden ratios, and real quadratic fields, Journal of Number Theory and Combinatorics, Vol 2, No. 3 pp 245-278, 2011. See Section 9.
D. Birmajer, J. B. Gil, M. D. Weiner, n the Enumeration of Restricted Words over a Finite Alphabet, J. Int. Seq. 19 (2016) # 16.1.3 , example 12
D. W. Boyd, Linear recurrence relations for some generalized Pisot sequences, Advances in Number Theory ( Kingston ON, 1991) 333-340, Oxford Sci. Publ., Oxford Univ. Press, New York, 1993.
E. I. Emerson, Recurrent Sequences in the Equation DQ^2=R^2+N, Fib. Quart., 7 (1969), pp. 231-242.
A. F. Horadam, Special properties of the sequence W_n(a,b; p,q), Fib. Quart., 5.5 (1967), 424-434. Case a=0,b=1; p=9, q=-1.
M. Janjic, On Linear Recurrence Equations Arising from Compositions of Positive Integers, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.7.
Tanya Khovanova, Recursive Sequences
W. Lang, On polynomials related to powers of the generating function of Catalan's numbers, Fib. Quart. 38 (2000) 408-419. Eq.(44), lhs, m=11.
Index entries for sequences related to Chebyshev polynomials.
Index entries for linear recurrences with constant coefficients, signature (9,-1).
|
|
FORMULA
|
G.f.: x/(1-9*x+x^2).
a(n) = S(2*n-1, sqrt(11))/sqrt(11) = S(n-1, 9); S(n, x) := U(n, x/2), Chebyshev polynomials of 2nd kind, A049310. S(-1, x) := 0.
a(n) = (((9+sqrt(77))/2)^n - ((9-sqrt(77))/2)^n)/sqrt(77). - Barry E. Williams, Aug 21 2000
G.f.: x/(1-9*x+x^2). - Barry E. Williams, Aug 21 2000
a(n+1) = Sum_{k, 0<=k<=n} A101950(n,k)*8^k. - Philippe Deléham, Feb 10 2012
Product {n >= 1} (1 + 1/a(n)) = 1/7*(7 + sqrt(77)). - Peter Bala, Dec 23 2012
Product {n >= 2} (1 - 1/a(n)) = 1/18*(7 + sqrt(77)). - Peter Bala, Dec 23 2012
|
|
EXAMPLE
|
G.f. = x + 9*x^2 + 80*x^3 + 711*x^4 + 6319*x^5 + 56160*x^6 + 499121*x^7 + ...
|
|
MATHEMATICA
|
Join[{a=0, b=1}, Table[c=9*b-a; a=b; b=c, {n, 60}]] (* Vladimir Joseph Stephan Orlovsky, Jan 20 2011 *)
CoefficientList[Series[x/(1 - 9*x + x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 23 2012 *)
|
|
PROG
|
(Sage) [lucas_number1(n, 9, 1) for n in range(22)] # Zerinvary Lajos, Jun 25 2008
(MAGMA) I:=[0, 1]; [n le 2 select I[n] else 9*Self(n-1) - Self(n-2): n in [1..30]]; // Vincenzo Librandi, Dec 23 2012
(PARI) concat(0, Vec(x/(1-9*x+x^2) + O(x^30))) \\ Michel Marcus, Sep 06 2017
|
|
CROSSREFS
|
Cf. A000027, A001906, A001353, A004254, A001109, A004187, A001090.
Cf. A056918(n)=sqrt{77*(a(n))^2 +4}, that is, a(n)=sqrt((A056918(n)^2 - 4)/77).
Sequence in context: A081108 A176174 A242632 * A192214 A127265 A055070
Adjacent sequences: A018910 A018911 A018912 * A018914 A018915 A018916
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
R. K. Guy
|
|
EXTENSIONS
|
G.f. adapted to the offset by Vincenzo Librandi, Dec 23 2012
|
|
STATUS
|
approved
|
|
|
|