login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A061670
Distance to nearest prime power p^k, k=0 and k >= 2 (A025475).
5
0, 1, 1, 0, 1, 2, 1, 0, 0, 1, 2, 3, 3, 2, 1, 0, 1, 2, 3, 4, 4, 3, 2, 1, 0, 1, 0, 1, 2, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 8, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 8, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
OFFSET
1,6
EXAMPLE
a(12)=3 because 9=3^2 is the nearest power to 12 (12-9=3).
MAPLE
N:= 1000: # to get a(1)..a(M) where M is the greatest prime power <= N.
Primes:= select(isprime, [2, seq(i, i=3..floor(sqrt(N)))]):
Pows:= sort(convert({1, seq(seq(p^e, e=2..floor(log[p](N))), p=Primes)}, list)):
nP:= nops(Pows):
M:= Pows[nP]:
V:= Vector(M):
V[2]:= 1:
for i from 2 to nP-1 do
for x from ceil((Pows[i]+Pows[i-1])/2) to floor((Pows[i]+Pows[i+1])/2) do
V[x]:= abs(x - Pows[i])
od od:
for x from ceil((M+Pows[nP-1])/2) to M do V[x]:= M - x od:
convert(V, list); # Robert Israel, Mar 23 2018
PROG
(PARI) isA025475(n) = {isprimepower(n) && !isprime(n) || n==1}
a(n) = {my(k=0); while(!isA025475(n+k) && !isA025475(n-k), k++); k; } \\ Altug Alkan, Mar 23 2018
CROSSREFS
There are four different sequences which may legitimately be called "prime powers": A000961 (p^k, k >= 0), A246655 (p^k, k >= 1), A246547 (p^k, k >= 2), A025475 (p^k, k=0 and k >= 2).
Sequence in context: A128519 A303979 A301573 * A236412 A236263 A337126
KEYWORD
nonn,look
AUTHOR
Michel ten Voorde, Jun 16 2001
EXTENSIONS
Definition corrected, and more terms from Robert Israel, Mar 23 2018
STATUS
approved