login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A061667 Fibonacci(2*n+1) - 2^(n-1). 12
1, 3, 9, 26, 73, 201, 546, 1469, 3925, 10434, 27633, 72977, 192322, 506037, 1329885, 3491810, 9161929, 24026745, 62983842, 165055853, 432445861, 1132806018, 2967020769, 7770353441, 20348233858, 53282736741, 139516753581, 365301078434, 956453590585 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Number of cells in the bottom row of all directed column-convex polyominoes of area n+1.

Also the binomial transform of A000071 (after removing its 2 leading zeros). - R. J. Mathar, Nov 04 2008

Equals row sums of triangle A147293. - Gary W. Adamson, Nov 05 2008

LINKS

Harry J. Smith, Table of n, a(n) for n = 1..200

E. Barcucci, R. Pinzani and R. Sprugnoli, Directed column-convex polyominoes by recurrence relations, Lecture Notes in Computer Science, No. 668, Springer, Berlin (1993), pp. 282-298.

A. Burstein and T. Mansour, Words restricted by 3-letter generalized multipermutation patterns, arXiv:math/0112281 [math.CO], 2001.

A. Burstein and T. Mansour, Words restricted by 3-letter generalized multipermutation patterns, Annals. Combin., 7 (2003), 1-14; see Th. 3.8.

Index entries for linear recurrences with constant coefficients, signature (5,-7,2).

FORMULA

G.f.:  x*(1-x)^2/((1-2*x)*(1-3*x+x^2)). - corrected by Philip B. Zhang, Nov 28 2014

a(n) = Sum_{k=0..n+1} C(n+1, k)*sum{j=0..floor(k/2), Fibonacci(k-2j)}. - Paul Barry, Apr 17 2005

a(n) = 2*A001906(n+1)-A001906(n)-A000079(n). - R. J. Mathar, Nov 16 2007

From Colin Barker, Jun 05 2017: (Start)

a(n) = 2^(-1-n)*(-5*4^n - (3-sqrt(5))^n*(-5+sqrt(5)) + (3+sqrt(5))^n*(5+sqrt(5))) / 5.

a(n) = 5*a(n-1) - 7*a(n-2) + 2*a(n-3) for n>3.

(End)

MATHEMATICA

Table[Fibonacci[2 n + 1] - 2^(n - 1), {n, 1, 100}] (* Vladimir Joseph Stephan Orlovsky, Jul 01 2011 *)

PROG

(PARI) { for (n=1, 200, write("b061667.txt", n, " ", fibonacci(2*n + 1) - 2^(n - 1))) } \\ Harry J. Smith, Jul 26 2009

(PARI) Vec(x*(1-x)^2/((1-2*x)*(1-3*x+x^2)) + O(x^50)) \\ Michel Marcus, Nov 29 2014

CROSSREFS

Cf. A147293. - Gary W. Adamson, Nov 05 2008

Sequence in context: A084787 A121190 A054447 * A234270 A258911 A268093

Adjacent sequences:  A061664 A061665 A061666 * A061668 A061669 A061670

KEYWORD

nonn,easy

AUTHOR

Emeric Deutsch, Jun 16 2001

EXTENSIONS

Offset changed from 0 to 1 by Harry J. Smith, Jul 26 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 19 03:59 EST 2017. Contains 294912 sequences.