login
A061669
a(n) = n*(mu(n) + 1), where mu(n) is the Moebius function A008683.
2
2, 0, 0, 4, 0, 12, 0, 8, 9, 20, 0, 12, 0, 28, 30, 16, 0, 18, 0, 20, 42, 44, 0, 24, 25, 52, 27, 28, 0, 0, 0, 32, 66, 68, 70, 36, 0, 76, 78, 40, 0, 0, 0, 44, 45, 92, 0, 48, 49, 50, 102, 52, 0, 54, 110, 56, 114, 116, 0, 60, 0, 124, 63, 64, 130, 0, 0, 68, 138, 0, 0, 72, 0, 148, 75
OFFSET
1,1
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..20000 (first 1000 terms from Harry J. Smith)
FORMULA
From Antti Karttunen, May 03 2022: (Start)
a(n) = n * A007423(n) = n*(1+A008683(n)) = n + A055615(n).
a(1) = 2, and for n > 1, a(n) = -Sum_{d|n, 1<d<n} d * A055615(n/d). [As A000027 and A055615 are Dirichlet inverses of each other]
(End)
EXAMPLE
a(5) = (5 * -1) + 5 = 0 because mu(5)= -1.
MAPLE
with(numtheory): seq(n*(mobius(n)+1), n=1..80); # Muniru A Asiru, Jul 01 2018
MATHEMATICA
Array[# (MoebiusMu[#] + 1) &, 75] (* Michael De Vlieger, Jul 01 2018 *)
PROG
(PARI) for(n=1, 20, print(n*moebius(n)+n))
(PARI) { for (n=1, 1000, write("b061669.txt", n, " ", n*moebius(n) + n) ) } \\ Harry J. Smith, Jul 26 2009
(PARI) A061669(n) = (n*(1+moebius(n))); \\ Antti Karttunen, May 03 2022
CROSSREFS
Cf. A030059 (positions of 0's), A053850 (positions of odd terms).
Sequence in context: A071390 A354350 A323884 * A324641 A365804 A349359
KEYWORD
easy,nonn
AUTHOR
Jason Earls, Jun 16 2001
EXTENSIONS
More terms from Dean Hickerson, Jul 24 2001
STATUS
approved