login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000499 a(n) = Sum_{k=1..n-1} k^3*sigma(k)*sigma(n-k).
(Formerly M5193 N2257)
3
0, 1, 27, 184, 875, 2700, 7546, 17600, 35721, 72750, 126445, 223776, 353717, 595448, 843750, 1349120, 1827636, 2808837, 3600975, 5306000, 6667920, 9599172, 11509982, 16416000, 19015625, 26605670, 30902310, 41686848, 46948825, 64233000, 70306760, 94089216 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

REFERENCES

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

J. Touchard, On prime numbers and perfect numbers, Scripta Math., 129 (1953), 35-39.

LINKS

John Cerkan, Table of n, a(n) for n = 1..10000

J. Touchard, On prime numbers and perfect numbers, Scripta Math., 129 (1953), 35-39. [Annotated scanned copy]

FORMULA

a(n) = Sum_{k=1..n-1} k^3*sigma(k)*sigma(n-k). - Michel Marcus, Feb 02 2014

EXAMPLE

G.f. = x^2 + 27*x^3 + 184*x^4 + 875*x^5 + 2700*x^6 + 7546*x^7 + 17600*x^8 + ...

MAPLE

S:=(n, e)->add(k^e*sigma(k)*sigma(n-k), k=1..n-1); f:=e->[seq(S(n, e), n=1..30)]; f(3);

MATHEMATICA

a[n_] := Sum[k^3*DivisorSigma[1, k]*DivisorSigma[1, n - k], {k, 1, n - 1}]; Array[a, 32] (* Jean-Fran├žois Alcover, Feb 09 2016 *)

PROG

(PARI) a(n) = sum(k=1, n-1, k^3*sigma(k)*sigma(n-k)); \\ Michel Marcus, Feb 02 2014

CROSSREFS

Cf. A000441, A000477.

Sequence in context: A224454 A258637 A228463 * A042416 A216108 A216110

Adjacent sequences:  A000496 A000497 A000498 * A000500 A000501 A000502

KEYWORD

nonn

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms and 0 prepended by Michel Marcus, Feb 02 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 19 07:02 EST 2017. Contains 294915 sequences.