login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A228463
Number of arrays of maxima of three adjacent elements of some length 8 0..n array.
1
27, 183, 736, 2227, 5615, 12453, 25096, 46941, 82699, 138699, 223224, 346879, 522991, 768041, 1102128, 1549465, 2138907, 2904511, 3886128, 5130027, 6689551, 8625805, 11008376, 13916085, 17437771, 21673107, 26733448, 32742711, 39838287
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = (2/45)*n^6 + (8/15)*n^5 + (115/36)*n^4 + 8*n^3 + (1667/180)*n^2 + (149/30)*n + 1.
Conjectures from Colin Barker, Sep 11 2018: (Start)
G.f.: x*(27 - 6*x + 22*x^2 - 27*x^3 + 22*x^4 - 7*x^5 + x^6) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
(End)
EXAMPLE
Some solutions for n=4:
..4....4....4....3....1....4....4....4....4....1....4....4....0....1....2....0
..2....4....4....1....0....2....2....2....2....0....4....2....1....1....1....0
..0....4....4....0....2....0....1....3....1....0....2....0....1....1....1....0
..0....3....1....1....3....0....3....3....0....2....2....1....2....0....0....1
..0....3....0....4....3....0....4....3....3....2....2....1....3....0....1....1
..2....3....4....4....3....1....4....3....4....3....2....1....4....4....2....4
CROSSREFS
Row 6 of A228461.
Sequence in context: A126495 A224454 A258637 * A000499 A365890 A365884
KEYWORD
nonn
AUTHOR
R. H. Hardin, Aug 22 2013
STATUS
approved