login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001158 sigma_3(n): sum of cubes of divisors of n.
(Formerly M4605 N1964)
72
1, 9, 28, 73, 126, 252, 344, 585, 757, 1134, 1332, 2044, 2198, 3096, 3528, 4681, 4914, 6813, 6860, 9198, 9632, 11988, 12168, 16380, 15751, 19782, 20440, 25112, 24390, 31752, 29792, 37449, 37296, 44226, 43344, 55261, 50654, 61740, 61544 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

If the canonical factorization of n into prime powers is the product of p^e(p) then sigma_k(n) = Product_p ((p^((e(p)+1)*k))-1)/(p^k-1).

Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001.

REFERENCES

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math.Series 55, Tenth Printing, 1972, p. 827.

T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 38.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Zagier, Don. "Elliptic modular forms and their applications." The 1-2-3 of modular forms. Springer Berlin Heidelberg, 2008. 1-103. See p. 17, G_4(z).

LINKS

T. D. Noe, Table of n, a(n) for n = 1..10000

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math.Series 55, Tenth Printing, 1972, p. 827.

Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.

Eric Weisstein's World of Mathematics, Divisor Function.

FORMULA

Multiplicative with a(p^e) = (p^(3e+3)-1)/(p^3-1). - David W. Wilson, Aug 01, 2001.

Dirichlet g.f. zeta(s)*zeta(s-3). [R. J. Mathar, Mar 04 2011].

G.f.: sum(k>=1, k^3*x^k/(1-x^k)). - Benoit Cloitre, Apr 21 2003

Equals A051731 * [1, 8, 27, 64, 125,...] = A127093 * [1, 4, 9, 16, 25,...]. - Gary W. Adamson, Nov 02 2007

L.g.f.: -log(prod(j>=1, (1-x^j)^(j^2))) = 1/1*z^1 + 9/2*z^2 + 28/3*z^3 + 73/4*z^4 + ... + a(n)/n*z^n + ... - Joerg Arndt, Feb 04 2011

a(n) = Sum{d|n} tau_{-2}^(d)*J_3(n/d), where tau_{-2} is A007427 and J_3 A059376. - Enrique Pérez Herrero, Jan 19 2013

MATHEMATICA

Table[DivisorSigma[3, n], {n, 100}] (* corrected by T. D. Noe, Mar 22 2009 *)

PROG

(PARI) N=99; q='q+O('q^N);

Vec(sum(n=1, N, n^3*q^n/(1-q^n))) /* Joerg Arndt, Feb 04 2011 */

(Sage) [sigma(n, 3) for n in xrange(1, 40)] # Zerinvary Lajos, Jun 04 2009

(Maxima) makelist(divsum(n, 3), n, 1, 100); /* Emanuele Munarini, Mar 26 2011 */

(MAGMA) [DivisorSigma(3, n): n in [1..40]]; // Bruno Berselli, Apr 10 2013

(Haskell)

a001158 n = product $ zipWith (\p e -> (p^(3*e + 3) - 1) `div` (p^3 - 1))

                      (a027748_row n) (a124010_row n)

-- Reinhard Zumkeller, Jun 30 2013

CROSSREFS

Cf. A000005, A000203, A001157.

Cf. A051731, A127093.

Cf. A027748, A124010.

Sequence in context: A065959 A226333 A017669 * A171215 A053819 A085292

Adjacent sequences:  A001155 A001156 A001157 * A001159 A001160 A001161

KEYWORD

nonn,easy,nice,mult,changed

AUTHOR

N. J. A. Sloane, R. K. Guy

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 26 04:18 EST 2014. Contains 250017 sequences.