login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A017665 Numerator of sum of reciprocals of divisors of n. 137
1, 3, 4, 7, 6, 2, 8, 15, 13, 9, 12, 7, 14, 12, 8, 31, 18, 13, 20, 21, 32, 18, 24, 5, 31, 21, 40, 2, 30, 12, 32, 63, 16, 27, 48, 91, 38, 30, 56, 9, 42, 16, 44, 21, 26, 36, 48, 31, 57, 93, 24, 49, 54, 20, 72, 15, 80, 45, 60, 14, 62, 48, 104, 127, 84, 24, 68, 63, 32, 72, 72, 65, 74, 57 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001.

Numerators of coefficients in expansion of Sum_{n >= 1} x^n/(n*(1-x^n)) = Sum_{n >= 1} log(1/(1-x^n)).

The primes in this sequence, in order of appearance (without multiplicity), begin: 3, 7, 2, 13, 31, 5, 127. The first occurrence of prime(k) = a(n) for k = 1, 2, 3, ... is at n=6, 2, 24, 4, 35640, 9, 297600, 588, ... - Jonathan Vos Post, Apr 02 2011

With amicable numbers, we have a(A002025(n)) = a(A002046(n)). - Michel Marcus, Dec 29 2013

Numerator of sigma(n)/n = A000203(n)/n. See A239578(n) - the smallest number k such that a(k) = n. - Jaroslav Krizek, Sep 23 2014

REFERENCES

L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 162, #16, (6), 4th formula.

LINKS

T. D. Noe, Table of n, a(n) for n = 1..10000

P. A. Weiner, The abundancy ratio, a measure of perfection, Math. Mag. 73 (4) (2000) 307-310

Eric Weisstein's World of Mathematics, Abundancy

FORMULA

a(n) = sigma(n)/gcd(n, sigma(n)). - Jon Perry, Jun 29 2003

Dirichlet generating function: zeta(s)*zeta(s+1) [for fraction A017665/A017666]. - Franklin T. Adams-Watters, Sep 11 2005

EXAMPLE

1, 3/2, 4/3, 7/4, 6/5, 2, 8/7, 15/8, 13/9, 9/5, 12/11, 7/3, 14/13, 12/7, 8/5, 31/16, ...

MAPLE

with(numtheory): seq(numer(sigma(n)/n), n=1..74) ; # Zerinvary Lajos, Jun 04 2008

MATHEMATICA

A017665[n_Integer] := Numerator[DivisorSigma[-1, n]]; A017665 /@ Range[100] (* Vladimir Joseph Stephan Orlovsky, Jul 21 2011 *)

Numerator[DivisorSigma[-1, Range[80]]] (* Harvey P. Dale, May 31 2013 *)

PROG

(PARI) a(n)=sigma(n)/gcd(n, sigma(n)) \\ Charles R Greathouse IV, Feb 11 2011

a(n)=numerator(sigma(n, -1)) \\ Charles R Greathouse IV, Apr 04 2011

(Haskell)

import Data.Ratio ((%), numerator)

a017665 = numerator . sum . map (1 %) . a027750_row

-- Reinhard Zumkeller, Apr 06 2012

CROSSREFS

Cf. A000203, A002025, A002046, A013954-A013972, A017666, A027750, A239578.

Sequence in context: A316570 A105853 A277216 * A248789 A105852 A190998

Adjacent sequences:  A017662 A017663 A017664 * A017666 A017667 A017668

KEYWORD

nonn,frac,nice

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 19 06:43 EDT 2018. Contains 315172 sequences. (Running on oeis4.)