login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A017665 Numerator of sum of reciprocals of divisors of n. 139
1, 3, 4, 7, 6, 2, 8, 15, 13, 9, 12, 7, 14, 12, 8, 31, 18, 13, 20, 21, 32, 18, 24, 5, 31, 21, 40, 2, 30, 12, 32, 63, 16, 27, 48, 91, 38, 30, 56, 9, 42, 16, 44, 21, 26, 36, 48, 31, 57, 93, 24, 49, 54, 20, 72, 15, 80, 45, 60, 14, 62, 48, 104, 127, 84, 24, 68, 63, 32, 72, 72, 65, 74, 57 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001

Numerators of coefficients in expansion of Sum_{n >= 1} x^n/(n*(1-x^n)) = Sum_{n >= 1} log(1/(1-x^n)).

The primes in this sequence, in order of appearance (without multiplicity), begin: 3, 7, 2, 13, 31, 5, 127. The first occurrence of prime(k) = a(n) for k = 1, 2, 3, ... is at n=6, 2, 24, 4, 35640, 9, 297600, 588, ... - Jonathan Vos Post, Apr 02 2011

With amicable numbers, we have a(A002025(n)) = a(A002046(n)). - Michel Marcus, Dec 29 2013

Numerator of sigma(n)/n = A000203(n)/n. See A239578(n) - the smallest number k such that a(k) = n. - Jaroslav Krizek, Sep 23 2014

REFERENCES

L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 162, #16, (6), 4th formula.

LINKS

T. D. Noe, Table of n, a(n) for n = 1..10000

P. A. Weiner, The abundancy ratio, a measure of perfection, Math. Mag. 73 (4) (2000) 307-310

Eric Weisstein's World of Mathematics, Abundancy

FORMULA

a(n) = sigma(n)/gcd(n, sigma(n)). - Jon Perry, Jun 29 2003

Dirichlet g.f.: zeta(s)*zeta(s+1) [for fraction A017665/A017666]. - Franklin T. Adams-Watters, Sep 11 2005

EXAMPLE

1, 3/2, 4/3, 7/4, 6/5, 2, 8/7, 15/8, 13/9, 9/5, 12/11, 7/3, 14/13, 12/7, 8/5, 31/16, ...

MAPLE

with(numtheory): seq(numer(sigma(n)/n), n=1..74) ; # Zerinvary Lajos, Jun 04 2008

MATHEMATICA

Numerator[DivisorSigma[-1, Range[80]]] (* Harvey P. Dale, May 31 2013 *)

Table[Numerator[DivisorSigma[1, n]/n], {n, 1, 50}] (* G. C. Greubel, Nov 08 2018 *)

PROG

(PARI) a(n)=sigma(n)/gcd(n, sigma(n)) \\ Charles R Greathouse IV, Feb 11 2011

(PARI) a(n)=numerator(sigma(n, -1)) \\ Charles R Greathouse IV, Apr 04 2011

(Haskell)

import Data.Ratio ((%), numerator)

a017665 = numerator . sum . map (1 %) . a027750_row

-- Reinhard Zumkeller, Apr 06 2012

(MAGMA) [Numerator(DivisorSigma(1, n)/n): n in [1..50]]; // G. C. Greubel, Nov 08 2018

CROSSREFS

Cf. A000203, A002025, A002046, A013954-A013972, A017666, A027750, A239578.

Sequence in context: A316570 A105853 A277216 * A248789 A105852 A190998

Adjacent sequences:  A017662 A017663 A017664 * A017666 A017667 A017668

KEYWORD

nonn,frac,nice

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 11 18:26 EST 2018. Contains 318049 sequences. (Running on oeis4.)