

A017668


Denominator of sum of 2nd powers of divisors of n.


4



1, 4, 9, 16, 25, 18, 49, 64, 81, 10, 121, 24, 169, 98, 45, 256, 289, 324, 361, 200, 441, 242, 529, 288, 625, 338, 729, 56, 841, 9, 961, 1024, 1089, 578, 49, 432, 1369, 722, 1521, 160, 1681, 441, 1849, 968, 2025, 1058, 2209, 1152, 2401, 500, 2601, 1352, 2809
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Sum_{dn} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157A001160 (k=2,3,4,5), A013954A013972 for k = 6,7,...,24.  Ahmed Fares (ahmedfares(AT)mydeja.com), Apr 05 2001


LINKS

G. C. Greubel, Table of n, a(n) for n = 1..10000
Colin Defant, On the Density of Ranges of Generalized Divisor Functions, arXiv:1506.05432 [math.NT], 2015.


FORMULA

Denominators of coefficients in expansion of Sum_{k>=1} x^k/(k^2*(1  x^k)).  Ilya Gutkovskiy, May 24 2018


EXAMPLE

1, 5/4, 10/9, 21/16, 26/25, 25/18, 50/49, 85/64, 91/81, 13/10, 122/121, 35/24, 170/169, ...


MATHEMATICA

Table[Denominator[DivisorSigma[2, n]], {n, 50}] (* Vladimir Joseph Stephan Orlovsky, Jul 21 2011 *)
Table[Denominator[DivisorSigma[2, n]/n^2], {n, 1, 50}] (* G. C. Greubel, Nov 08 2018 *)


PROG

(PARI) a(n) = denominator(sigma(n, 2)); \\ Michel Marcus, Aug 24 2018
(PARI) vector(50, n, denominator(sigma(n, 2)/n^2)) \\ G. C. Greubel, Nov 08 2018
(MAGMA) [Denominator(DivisorSigma(2, n)/n^2): n in [1..50]]; // G. C. Greubel, Nov 08 2018


CROSSREFS

Cf. A017667 (numerator).
Sequence in context: A070448 A081403 A259602 * A225004 A074373 A067115
Adjacent sequences: A017665 A017666 A017667 * A017669 A017670 A017671


KEYWORD

nonn,frac


AUTHOR

N. J. A. Sloane


STATUS

approved



