This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A020777 Decimal expansion of (-1)*Gamma'(1/4)/Gamma(1/4) where Gamma(x) denotes the Gamma function. 10
 4, 2, 2, 7, 4, 5, 3, 5, 3, 3, 3, 7, 6, 2, 6, 5, 4, 0, 8, 0, 8, 9, 5, 3, 0, 1, 4, 6, 0, 9, 6, 6, 8, 3, 5, 7, 7, 3, 6, 7, 2, 4, 4, 4, 3, 8, 7, 0, 8, 2, 4, 2, 2, 7, 1, 6, 5, 5, 2, 7, 9, 5, 5, 9, 5, 1, 8, 9, 5, 6, 7, 9, 5, 8, 2, 9, 8, 5, 3, 3, 1, 7, 0, 6, 8, 5, 5, 4, 4, 5, 6, 9, 5, 2, 0, 6, 1, 3, 4, 6, 1, 3, 1, 7, 0 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 REFERENCES S.J. Patterson, "An introduction to the theory of the Riemann zeta function", Cambridge studies in advanced mathematics no. 14, p. 135, 1995. LINKS G. C. Greubel, Table of n, a(n) for n = 1..10000 Wikipedia, Digamma function FORMULA Gamma'(1/4)/Gamma(1/4) = -EulerGamma - 3*log(2) - Pi/2 where EulerGamma is the Euler-Mascheroni constant (A001620). Pi = gamma(0,1/4) - gamma(0,3/4) = A020777 - A200134, where gamma(n,x) denotes the generalized Stieltjes constants. - Peter Luschny, May 16 2018 EXAMPLE 4.2274535333762654080895301460966835773672444387082422716552795595189567958... MAPLE evalf(gamma+3*log(2)+Pi/2) ; # R. J. Mathar, Nov 13 2011 MATHEMATICA EulerGamma + Pi/2 + Log[8] // RealDigits[#, 10, 105][[1]] & (* Jean-François Alcover, Jun 18 2013 *) N[StieltjesGamma[0, 1/4], 99] (* Peter Luschny, May 16 2018 *) PROG (PARI) Euler+3*log(2)+Pi/2 (MAGMA) SetDefaultRealField(RealField(100)); R:= RealField(); EulerGamma(R) + Pi(R)/2 + Log(8); // G. C. Greubel, Aug 28 2018 CROSSREFS Cf. A001620, A200134, A301816. Sequence in context: A261557 A270809 A087507 * A153810 A098134 A079191 Adjacent sequences:  A020774 A020775 A020776 * A020778 A020779 A020780 KEYWORD cons,nonn AUTHOR Benoit Cloitre, May 24 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 23 20:01 EDT 2019. Contains 328373 sequences. (Running on oeis4.)