

A020777


Decimal expansion of (1)*Gamma'(1/4)/Gamma(1/4) where Gamma(x) denotes the Gamma function.


8



4, 2, 2, 7, 4, 5, 3, 5, 3, 3, 3, 7, 6, 2, 6, 5, 4, 0, 8, 0, 8, 9, 5, 3, 0, 1, 4, 6, 0, 9, 6, 6, 8, 3, 5, 7, 7, 3, 6, 7, 2, 4, 4, 4, 3, 8, 7, 0, 8, 2, 4, 2, 2, 7, 1, 6, 5, 5, 2, 7, 9, 5, 5, 9, 5, 1, 8, 9, 5, 6, 7, 9, 5, 8, 2, 9, 8, 5, 3, 3, 1, 7, 0, 6, 8, 5, 5, 4, 4, 5, 6, 9, 5, 2, 0, 6, 1, 3, 4, 6, 1, 3, 1, 7, 0
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


REFERENCES

S.J. Patterson, "An introduction to the theory of the Riemann zeta function", Cambridge studies in advanced mathematics no. 14, p. 135


LINKS

Table of n, a(n) for n=1..105.
Wikipedia, Digamma function


FORMULA

Gamma'(1/4)/Gamma(1/4) = EulerGamma  3*log(2)  Pi/2 where EulerGamma is the EulerMascheroni constant (A001620).


EXAMPLE

4.2274535333762654080895301460966835773672444387082422716552795595189567958...


MAPLE

evalf(gamma+3*log(2)+Pi/2) ; # R. J. Mathar, Nov 13 2011


MATHEMATICA

EulerGamma + Pi/2 + Log[8] // RealDigits[#, 10, 105][[1]] & (* JeanFrançois Alcover, Jun 18 2013 *)


PROG

(PARI) Euler+3*log(2)+Pi/2


CROSSREFS

Sequence in context: A199609 A019834 A087507 * A153810 A098134 A079191
Adjacent sequences: A020774 A020775 A020776 * A020778 A020779 A020780


KEYWORD

cons,nonn


AUTHOR

Benoit Cloitre, May 24 2003


STATUS

approved



