The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A002895 Domb numbers: number of 2n-step polygons on diamond lattice. (Formerly M3626 N1473) 62
 1, 4, 28, 256, 2716, 31504, 387136, 4951552, 65218204, 878536624, 12046924528, 167595457792, 2359613230144, 33557651538688, 481365424895488, 6956365106016256, 101181938814289564, 1480129751586116848, 21761706991570726096, 321401321741959062016 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS a(n) is the (2n)th moment of the distance from the origin of a 4-step random walk in the plane. - Peter M.W. Gill (peter.gill(AT)nott.ac.uk), Mar 03 2004 Row sums of the cube of A008459. - Peter Bala, Mar 05 2013 Conjecture: Let D(n) be the (n+1) X (n+1) Hankel-type determinant with (i,j)-entry equal to a(i+j) for all i,j = 0..n. Then the number D(n)/12^n is always a positive odd integer. - Zhi-Wei Sun, Aug 14 2013 It appears that the expansions exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + 4*x + 22*x^2 + 152*x^3 + 1241*x^4 + ... and exp( Sum_{n >= 1} 1/4*a(n)*x^n/n ) = 1 + x + 4*x^2 + 25*x^3 + 199*x^4 + ... have integer coefficients. See A267219. - Peter Bala, Jan 12 2016 This is one of the Apéry-like sequences - see Cross-references. - Hugo Pfoertner, Aug 06 2017 REFERENCES N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Indranil Ghosh, Table of n, a(n) for n = 0..832 (terms 0..100 from T. D. Noe) B. Adamczewski, J. P. Bell, E. Delaygue, Algebraic independence of G-functions and congruences "a la Lucas", arXiv preprint arXiv:1603.04187 [math.NT], 2016. David H. Bailey, Jonathan M. Borwein, David Broadhurst and M. L. Glasser, Elliptic integral evaluations of Bessel moments, arXiv:0801.0891 [hep-th], 2008. J. M. Borwein, A short walk can be beautiful, 2015. J. M. Borwein, Adventures with the OEIS: Five sequences Tony may like, Guttman 70th [Birthday] Meeting, 2015, revised May 2016. J. M. Borwein, Adventures with the OEIS: Five sequences Tony may like, Guttman 70th [Birthday] Meeting, 2015, revised May 2016. [Cached copy, with permission] Jonathan M. Borwein and Armin Straub, Mahler measures, short walks and log-sine integrals (2012). Jonathan M. Borwein, Armin Straub and Christophe Vignat, Densities of short uniform random walks, Part II: Higher dimensions, Preprint, 2015. Jonathan M. Borwein, Dirk Nuyens, Armin Straub and James Wan, Random Walk Integrals, 2010. Alin Bostan, Andrew Elvey Price, Anthony John Guttmann, Jean-Marie Maillard, Stieltjes moment sequences for pattern-avoiding permutations, arXiv:2001.00393 [math.CO], 2020. H. Huat Chan, Song Heng Chan, Zhiguo Liu, Domb's numbers and Ramanujan-Sato type series for 1/pi, Adv. Math. 186 (2004) 396. Shaun Cooper, J. G. Wan and W. Zudilin, Holonomic alchemy and series for 1/pi, arXiv preprint arXiv:1512.04608 [math.NT], 2015. E. Delaygue, Arithmetic properties of Apery-like numbers, arXiv preprint arXiv:1310.4131 [math.NT], 2013-2015. C. Domb, On the theory of cooperative phenomena in crystals, Advances in Phys., 9 (1960), 149-361. J. A. Hendrickson, Jr., On the enumeration of rectangular (0,1)-matrices, Journal of Statistical Computation and Simulation, 51 (1995), 291-313. Ji-Cai Liu, Supercongruences for sums involving Domb numbers, arXiv:2008.02647 [math.NT], 2020. Rui-Li Liu, Feng-Zhen Zhao, New Sufficient Conditions for Log-Balancedness, With Applications to Combinatorial Sequences, J. Int. Seq., Vol. 21 (2018), Article 18.5.7. Yen Lee Loh, A general method for calculating lattice Green functions on the branch cut, arXiv:1706.03083 [math-ph], 2017. Amita Malik and Armin Straub, Divisibility properties of sporadic Apéry-like numbers, Research in Number Theory, 2016, 2:5 Robert Osburn and Brundaban Sahu, A supercongruence for generalized Domb numbers. L. B. Richmond, J. Shallit, Counting Abelian Squares, arXiv:0807.5028 [math.CO], 2008. Armin Straub, Arithmetic aspects of random walks and methods in definite integration, Ph. D. Dissertation, School Of Science And Engineering, Tulane University, 2012. Zhi-Hong Sun, Super congruences concerning binomial coefficients and Apéry-like numbers, arXiv:2002.12072 [math.NT], 2020. Zhi-Hong Sun, New congruences involving Apéry-like numbers, arXiv:2004.07172 [math.NT], 2020. Z.-W. Sun, Conjectures involving arithmetical sequences, Number Theory: Arithmetic in Shangri-La (eds., S. Kanemitsu, H.-Z. Li and J.-Y. Liu), Proc. the 6th China-Japan Sem. Number Theory (Shanghai, August 15-17, 2011), World Sci., Singapore, 2013, pp. 244-258. [broken link] H. A. Verrill, Sums of squares of binomial coefficients, with applications to Picard-Fuchs equations, arXiv:math/0407327 [math.CO], 2004. Chen Wang, Supercongruences and hypergeometric transformations, arXiv:2003.09888 [math.NT], 2020. Yi Wang and Bao-Xuan Zhu, Proofs of some conjectures on monotonicity of number-theoretic and combinatorial sequences, arXiv preprint arXiv:1303.5595 [math.CO], 2013. Bao-Xuan Zhu, Higher order log-monotonicity of combinatorial sequences, arXiv preprint arXiv:1309.6025 [math.CO], 2013. FORMULA a(n) = Sum_{k=0..n} binomial(n, k)^2 * binomial(2n-2k, n-k) * binomial(2k, k). D-finite with recurrence: n^3*a(n) = 2*(2*n-1)*(5*n^2-5*n+2)*a(n-1) - 64*(n-1)^3*a(n-2). - Vladeta Jovovic, Jul 16 2004 Sum_{n>=0} a(n)*x^n/n!^2 = BesselI(0, 2*sqrt(x))^4. - Vladeta Jovovic, Aug 01 2006 G.f.: hypergeom([1/6, 1/3],[1],108*x^2/(1-4*x)^3)^2/(1-4*x). - Mark van Hoeij, Oct 29 2011 From Zhi-Wei Sun, Mar 20 2013: (Start) Via the Zeilberger algorithm, Zhi-Wei Sun proved that: (1) 4^n*a(n) = Sum_{k = 0..n} (binomial(2k,k)*binomial(2(n-k),n-k))^3/ binomial(n,k)^2, (2) a(n) = Sum_{k = 0..n} (-1)^(n-k)*binomial(n,k)*binomial(2k,n)*binomial(2k,k)* binomial(2(n-k),n-k). (End) a(n) ~ 2^(4*n+1)/((Pi*n)^(3/2)). - Vaclav Kotesovec, Aug 20 2013 G.f. y=A(x) satisfies: 0 = x^2*(4*x - 1)*(16*x - 1)*y''' + 3*x*(128*x^2 - 30*x + 1)*y'' + (448*x^2 - 68*x + 1)*y' + 4*(16*x - 1)*y. - Gheorghe Coserea, Jun 26 2018 a(n) = Sum_{p+q+r+s=n} (n!/(p!*q!*r!*s!))^2 with p,q,r,s >= 0. See Verrill, p. 5. - Peter Bala, Jan 06 2020 MAPLE A002895 := n -> add(binomial(n, k)^2*binomial(2*n-2*k, n-k)*binomial(2*k, k), k=0..n): seq(A002895(n), n=0..25); # Wesley Ivan Hurt, Dec 20 2015 A002895 := n -> binomial(2*n, n)*hypergeom([1/2, -n, -n, -n], [1, 1, 1/2 - n], 1): seq(simplify(A002895(n)), n=0..19); # Peter Luschny, May 23 2017 MATHEMATICA Table[Sum[Binomial[n, k]^2 Binomial[2n-2k, n-k]Binomial[2k, k], {k, 0, n}], {n, 0, 30}] (* Harvey P. Dale, Aug 15 2011 *) a[n_] = Binomial[2*n, n]*HypergeometricPFQ[{1/2, -n, -n, -n}, {1, 1, 1/2-n}, 1]; (* or *) a[n_] := SeriesCoefficient[BesselI[0, 2*Sqrt[x]]^4, {x, 0, n}]*n!^2; Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Dec 30 2013, after Vladeta Jovovic *) max = 19; Total /@ MatrixPower[Table[Binomial[n, k]^2, {n, 0, max}, {k, 0, max}], 3] (* Jean-François Alcover, Mar 24 2015, after Peter Bala *) PROG (PARI) C=binomial; a(n) = sum(k=0, n, C(n, k)^2 * C(2*n-2*k, n-k) * C(2*k, k) ); /* Joerg Arndt, Apr 19 2013 */ CROSSREFS Cf. A002893, A008459, A169714, A169715, A228289, A267219. The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692,A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.) For primes that do not divide the terms of the sequences A000172, A005258, A002893, A081085, A006077, A093388, A125143, A229111, A002895, A290575, A290576, A005259 see A260793, A291275-A291284 and A133370 respectively. Sequence in context: A300050 A191801 A064340 * A294189 A141004 A217806 Adjacent sequences:  A002892 A002893 A002894 * A002896 A002897 A002898 KEYWORD nonn,easy,nice,walk AUTHOR EXTENSIONS More terms from Vladeta Jovovic, Mar 11 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 24 20:13 EDT 2020. Contains 337321 sequences. (Running on oeis4.)