login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A143414 Apery-like numbers for the constant 1/e: a(n) = 1/(n-1)!*sum {k = 0..n-1} C(n-1,k)*(2*n-k)!. 2
0, 2, 30, 492, 9620, 222630, 5989242, 184139480, 6377545512, 245868202890, 10446648201110, 485126443539012, 24449173476952380, 1329144227959100462, 77535552689576436210, 4831278674685354629040, 320262424087652686405712 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

This sequence satisfies the recursion (n-1)^2*a(n) - n^2*a(n-2) = (2*n-1)*(2*n^2-2*n+1)*a(n-1), which leads to a rapidly converging series for the constant 1/e: 1/e = 1/2 - 2 * sum {n = 2..inf} (-1)^n * n^2/(a(n)*a(n-1)). Notice the striking resemblance to the theory of the Apery numbers A(n) = A005258(n), which satisfy a similar recurrence relation n^2*A(n) - (n-1)^2*A(n-2) = (11*n^2-11*n+3)*A(n-1) and which appear in the series acceleration formula zeta(2) = 5*sum {n = 1..inf} 1/(n^2*A(n)*A(n-1)). Compare with A143413 and A143415.

LINKS

Table of n, a(n) for n=0..16.

A. van der Poorten, A proof that Euler missed ... Apery's proof of the irrationality of zeta(3). An informal report. Math. Intelligencer 1 (1978/79), no 4, 195-203.

FORMULA

a(n) = 1/(n-1)!*sum {k = 0..n-1} C(n-1,k)*(2*n-k)!. Recurrence relation: a(0) = 0, a(1) = 2, (n-1)^2*a(n) - n^2*a(n-2) = (2*n-1)*(2*n^2-2*n+1)*a(n-1), n >= 2. Let b(n) denote the solution to this recurrence with initial conditions b(0) = -1, b(1) = 1. Then b(n) = A143413(n) = 1/(n-1)!*sum {k = 0..n+1} (-1)^k*C(n+1,k)*(2*n-k)!. The rational number b(n)/a(n) is equal to the Pade approximation to exp(x) of degree (n+1,n-1) evaluated at x = -1 and b(n)/a(n) -> 1/e very rapidly. For example, |b(100)/a(100) - 1/e| is approximately 2.177 * 10^(-437). The identity a(n)*b(n-1) - a(n-1)*b(n) = (-1)^n *2*n^2 leads to rapidly converging series for the constants 1/e and e: 1/e = 1/2 - 2*sum {n = 2..inf} (-1)^n * n^2/(a(n)*a(n-1)) = 1/2 - 2*[2^2/(2*30) - 3^2/(30*492) + 4^2/(492*9620) - ...]; e = 2 * sum {n = 1..inf} (-1)^n * n^2/(b(n)*b(n-1)) = 2*[1 + 2^2/(1*11) - 3^2/(11*181) + 4^2/(181*3539) - ...].

a(n) = (BesselK(n-1/2,1/2)-(1-2*n)*BesselK(n+1/2,1/2)) * exp(1/2)/(2*Pi^(1/2)) [From Mark van Hoeij, Nov 12 2009]

MAPLE

with(combinat): a := n -> 1/(n-1)!*add (binomial(n-1, k)*(2*n-k)!, k = 0..n-1): seq(a(n), n = 0..19);

CROSSREFS

Cf. A143413, A143415.

Sequence in context: A219706 A219869 A072976 * A099046 A020547 A208881

Adjacent sequences:  A143411 A143412 A143413 * A143415 A143416 A143417

KEYWORD

easy,nonn

AUTHOR

Peter Bala, Aug 14 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 18 19:05 EST 2014. Contains 252174 sequences.