login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A262177 Decimal expansion of Q_5 = zeta(5) / (Sum_{k>=1} (-1)^(k+1) / (k^5 * binomial(2k, k))), a conjecturally irrational constant defined by an Apéry-like formula. 34
2, 0, 9, 4, 8, 6, 8, 6, 2, 2, 0, 1, 0, 0, 3, 6, 9, 9, 3, 8, 5, 0, 2, 4, 9, 2, 9, 3, 7, 3, 2, 9, 4, 1, 6, 3, 0, 2, 9, 6, 7, 5, 8, 7, 4, 8, 5, 6, 7, 7, 8, 1, 8, 2, 7, 4, 0, 1, 2, 7, 5, 8, 7, 8, 3, 7, 4, 3, 8, 0, 0, 7, 8, 7, 6, 8, 4, 6, 8, 1, 5, 6, 3, 2, 0, 6, 0, 4, 4, 2, 3, 2, 0, 9, 0, 4, 3, 1, 3, 6, 9, 3, 1 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The similar constant Q_3 = zeta(3) / (Sum_{k>=1} (-1)^(k+1) / (k^3 * binomial(2k, k))) evaluates to 5/2.

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..5000

David Bailey, Jonathan Borwein, David Bradley, Experimental determination of Apéry-like identities for zeta(2n+2), arXiv:math/0505270 [math.NT], 2005.

FORMULA

Equals 2*zeta(5)/6F5(1,1,1,1,1,1; 3/2,2,2,2,2; -1/4).

EXAMPLE

2.09486862201003699385024929373294163029675874856778182740127587837438...

MATHEMATICA

Q5 = Zeta[5]/Sum[(-1)^(k+1)/(k^5*Binomial[2k, k]), {k, 1, Infinity}]; RealDigits[Q5, 10, 103] // First

PROG

(PARI) zeta(5)/suminf(k=1, (-1)^(k+1)/(k^5*binomial(2*k, k))) \\ Michel Marcus, Sep 14 2015

CROSSREFS

Cf. A013663.

The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692, A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)

Sequence in context: A168229 A019693 A007493 * A136319 A176057 A272413

Adjacent sequences:  A262174 A262175 A262176 * A262178 A262179 A262180

KEYWORD

nonn,cons,easy

AUTHOR

Jean-François Alcover, Sep 14 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 21 22:13 EDT 2018. Contains 316429 sequences. (Running on oeis4.)