This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A005258 Apery numbers: a(n) = Sum_{k=0..n} binomial(n,k)^2 * binomial(n+k,k). (Formerly M3057) 69
 1, 3, 19, 147, 1251, 11253, 104959, 1004307, 9793891, 96918753, 970336269, 9807518757, 99912156111, 1024622952993, 10567623342519, 109527728400147, 1140076177397091, 11911997404064793, 124879633548031009, 1313106114867738897, 13844511065506477501 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS This is the Taylor expansion of a special point on a curve described by Beauville. - Matthijs Coster, Apr 28 2004 Equals the main diagonal of square array A108625. - Paul D. Hanna, Jun 14 2005 This sequence is t_5 in Cooper's paper. - Jason Kimberley, Nov 25 2012 Conjecture: For each n=1,2,3,... the polynomial a_n(x) = Sum_{k=0..n} C(n,k)^2*C(n+k,k)*x^k is irreducible over the field of rational numbers. - Zhi-Wei Sun, Mar 21 2013 Diagonal of rational functions 1/(1 - x - x*y - y*z - x*z - x*y*z), 1/(1 + y + z + x*y + y*z + x*z + x*y*z), 1/(1 - x - y - z + x*y + x*y*z), 1/(1 - x - y - z + y*z + x*z - x*y*z). - Gheorghe Coserea, Jul 07 2018 REFERENCES Roger Apéry, Irrationalité de zeta(2) et zeta(3), in Journées Arith. de Luminy. Colloque International du Centre National de la Recherche Scientifique (CNRS) held at the Centre Universitaire de Luminy, Luminy, Jun 20-24, 1978. Asterisque, 61 (1979), 11-13. Matthijs Coster, Over 6 families van krommen [On 6 families of curves], Master's Thesis (unpublished), Aug 26 1983. N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Simon Plouffe, Table of n, a(n) for n = 0..954 B. Adamczewski, J. P. Bell, E. Delaygue, Algebraic independence of G-functions and congruences "a la Lucas", arXiv preprint arXiv:1603.04187 [math.NT], 2016. R. Apéry, Sur certaines séries entières arithmétiques, Groupe de travail d'analyse ultramétrique, 9 no. 1 (1981-1982), Exp. No. 16, 2 p. Thomas Baruchel, C. Elsner, On error sums formed by rational approximations with split denominators, arXiv preprint arXiv:1602.06445 [math.NT], 2016. Arnaud Beauville, Les familles stables de courbes sur P_1 admettant quatre fibres singulières, Comptes Rendus, Académie Sciences Paris, no. 294, May 24 1982, page 657. F. Beukers, Another congruence for the Apéry numbers, J. Number Theory 25 (1987), no. 2, 201-210. A. Bostan, S. Boukraa, J.-M. Maillard, J.-A. Weil, Diagonals of rational functions and selected differential Galois groups, arXiv preprint arXiv:1507.03227 [math-ph], 2015. Francis Brown, Irrationality proofs for zeta values, moduli spaces and dinner parties, arXiv:1412.6508 [math.NT], 2014. S. Cooper, Sporadic sequences, modular forms and new series for 1/pi, Ramanujan J. (2012). M. Coster, Email, Nov 1990 E. Delaygue, Arithmetic properties of Apery-like numbers, arXiv preprint arXiv:1310.4131 [math.NT], 2013-2015. E. Deutsch and B. E. Sagan, Congruences for Catalan and Motzkin numbers and related sequences, J. Number Theory 117 (2006), 191-215. C. Elsner, On recurrence formulas for sums involving binomial coefficients, Fib. Q., 43,1 (2005), 31-45. C. Elsner, On prime-detecting sequences from Apery's recurrence formulas for zeta(3) and zeta(2), JIS 11 (2008) 08.5.1 R. K. Guy, Letter to N. J. A. Sloane, Oct 1985 Lalit Jain and Pavlos Tzermias, Beukers' integrals and Apery's recurrences, Journal of Integer Sequences, Vol. 8 (2005), Article 05.1.1. V. Kotesovec, Asymptotic of generalized Apery sequences with powers of binomial coefficients, Nov 04 2012. Ji-Cai Liu, Supercongruences for the (p-1)th Apéry number, arXiv:1803.11442 [math.NT], 2018. Amita Malik and Armin Straub, Divisibility properties of sporadic Apéry-like numbers, Research in Number Theory, 2016, 2:5 R. Mestrovic, Lucas' theorem: its generalizations, extensions and applications (1878--2014), arXiv preprint arXiv:1409.3820 [math.NT], 2014. Simon Plouffe, The first 2553 Apery numbers E. Rowland, R. Yassawi, Automatic congruences for diagonals of rational functions, arXiv preprint arXiv:1310.8635 [math.NT], 2013. V. Strehl, Recurrences and Legendre transform, Séminaire Lotharingien de Combinatoire, B29b (1992), 22 pp. Zhi-Hong Sun, Congruences for Apéry-like numbers, arXiv:1803.10051 [math.NT], 2018. A. van der Poorten, A proof that Euler missed ... Apery's proof of the irrationality of zeta(3). An informal report. Math. Intelligencer 1 (1978/79), no 4, 195-203. Eric Weisstein's World of Mathematics, Apery Number. W. Zudilin, Approximations to -, di and trilogarithms, arXiv:math/0409023 [math.CA], 2004-2005. FORMULA a(n) = hypergeom([n+1, -n, -n], [1, 1], 1). - Vladeta Jovovic, Apr 24 2003 (n+1)^2 * a(n+1) = (11*n^2+11*n+3) * a(n) + n^2 * a(n-1). - Matthijs Coster, Apr 28 2004 Let b(n) be the solution to the above recurrence with b(0) = 0, b(1) = 5. Then the b(n) are rational numbers with b(n)/a(n) -> zeta(2) very rapidly. The identity b(n)*a(n-1) - b(n-1)*a(n) = (-1)^(n-1)*5/n^2 leads to a series acceleration formula: zeta(2) = 5 * Sum_{n >= 1} 1/(n^2*a(n)*a(n-1)) = 5*(1/(1*3) + 1/(2^2*3*19) + 1/(3^2*19*147) + ...). Similar results hold for the constant e: see A143413. - Peter Bala, Aug 14 2008 G.f.: hypergeom([1/12, 5/12],[1], 1728*x^5*(1-11*x-x^2)/(1-12*x+14*x^2+12*x^3+x^4)^3) / (1-12*x+14*x^2+12*x^3+x^4)^(1/4). - Mark van Hoeij, Oct 25 2011 a(n) ~ ((11+5*sqrt(5))/2)^(n+1/2)/(2*Pi*5^(1/4)*n). - Vaclav Kotesovec, Oct 05 2012 1/Pi = 5*(sqrt(47)/7614)*Sum_{n>=0} (-1)^n a(n)*binomial(2n,n)*(682n+71)/15228^n. [Cooper, equation (4)] - Jason Kimberley, Nov 26 2012 a(-1 - n) = (-1)^n * a(n) if n>=0. a(-1 - n) = -(-1)^n * a(n) if n<0. - Michael Somos, Sep 18 2013 0 = a(n)*(a(n+1)*(+4*a(n+2) + 83*a(n+3) - 12*a(n+4)) + a(n+2)*(+32*a(n+2) + 902*a(n+3) - 147*a(n+4)) + a(n+3)*(-56*a(n+3) + 12*a(n+4))) + a(n+1)*(a(n+1)*(+17*a(n+2) + 374*a(n+3) - 56*a(n+4)) + a(n+2)*(+176*a(n+2) + 5324*a(n+3) - 902*a(n+4) + a(n+3)*(-374*a(n+3) + 83*a(n+4))) + a(n+2)*(a(n+2)*(-5*a(n+2) - 176*a(n+3) + 32*a(n+4)) + a(n+3)*(+17*a(n+3) - 4*a(n+4))) for all n in Z. - Michael Somos, Aug 06 2016 a(n) = binomial(2*n, n)*hypergeom([-n, -n, -n],[1, -2*n], 1). - Peter Luschny, Feb 10 2018 a(n) = Sum_{k = 0..n} (-1)^(n-k)*binomial(n,k)*binomial(n+k,k)^2. - Peter Bala, Feb 10 2018 G.f. y=A(x) satisfies: 0 = x*(x^2 + 11*x - 1)*y'' + (3*x^2 + 22*x - 1)*y' + (x + 3)*y. - Gheorghe Coserea, Jul 01 2018 EXAMPLE G.f. = 1 + 3*x + 19*x^2 + 147*x^3 + 1251*x^4 + 11253*x^5 + 104959*x^6 + ... MAPLE with(combinat): seq(add((multinomial(n+k, n-k, k, k))*binomial(n, k), k=0..n), n=0..18); # Zerinvary Lajos, Oct 18 2006 a := n -> binomial(2*n, n)*hypergeom([-n, -n, -n], [1, -2*n], 1): seq(simplify(a(n)), n=0..20); # Peter Luschny, Feb 10 2018 MATHEMATICA a[n_] := HypergeometricPFQ[ {n+1, -n, -n}, {1, 1}, 1]; Table[ a[n], {n, 0, 18}] (* Jean-François Alcover, Jan 20 2012, after Vladeta Jovovic *) PROG (Haskell) a005258 n = sum [a007318 n k ^ 2 * a007318 (n + k) k | k <- [0..n]] -- Reinhard Zumkeller, Jan 04 2013 (PARI) {a(n) = if( n<0, -(-1)^n * a(-1-n), sum(k=0, n, binomial(n, k)^2 * binomial(n+k, k)))} /* Michael Somos, Sep 18 2013 */ (GAP) a:=n->Sum([0..n], k->(-1)^(n-k)*Binomial(n, k)*Binomial(n+k, k)^2);; A005258:=List([0..20], n->a(n));; # Muniru A Asiru, Feb 11 2018 (GAP) List([0..20], n->Sum([0..n], k->Binomial(n, k)^2*Binomial(n+k, k))); # Muniru A Asiru, Jul 29 2018 CROSSREFS Cf. A002736, A005258, A005259, A005429, A005430, A108625, A143413, A218690, A218692. Cf. A007318. The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692,A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.) For primes that do not divide the terms of the sequences A000172, A005258, A002893, A081085, A006077, A093388, A125143, A229111, A002895, A290575, A290576, A005259 see A260793, A291275-A291284 and A133370 respectively. Sequence in context: A293527 A080833 A073516 * A131551 A074546 A054316 Adjacent sequences:  A005255 A005256 A005257 * A005259 A005260 A005261 KEYWORD nonn,easy,nice AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 19 03:59 EDT 2018. Contains 313843 sequences. (Running on oeis4.)