login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A008459 Square the entries of Pascal's triangle. 57
1, 1, 1, 1, 4, 1, 1, 9, 9, 1, 1, 16, 36, 16, 1, 1, 25, 100, 100, 25, 1, 1, 36, 225, 400, 225, 36, 1, 1, 49, 441, 1225, 1225, 441, 49, 1, 1, 64, 784, 3136, 4900, 3136, 784, 64, 1, 1, 81, 1296, 7056, 15876, 15876, 7056, 1296, 81, 1, 1, 100, 2025, 14400, 44100, 63504 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

Number of lattice paths from (0, 0) to (n, n) with steps (1, 0) and (0, 1), having k right turns. - Emeric Deutsch, Nov 23 2003

Product of A007318 and A105868. - Paul Barry, Nov 15 2005

Number of partitions that fit in an n X n box with Durfee square k. - Franklin T. Adams-Watters, Feb 20 2006

From Peter Bala, Oct 23 2008: (Start)

Narayana numbers of type B. Row n of this triangle is the h-vector of the simplicial complex dual to an associahedron of type B_n (a cyclohedron) [Fomin & Reading, p. 60]. See A063007 for the corresponding f-vectors for associahedra of type B_n. See A001263 for the h-vectors for associahedra of type A_n. The Hilbert transform of this triangular array is A108625 (see A145905 for the definition of this term).

Let A_n be the root lattice generated as a monoid by {e_i - e_j: 0 <= i, j <= n + 1}. Let P(A_n) be the polytope formed by the convex hull of this generating set. Then the rows of this array are the h-vectors of a unimodular triangulation of P(A_n) [Ardila et al.]. A063007 is the corresponding array of f-vectors for these type A_n polytopes. See A086645 for the array of h-vectors for type C_n polytopes and A108558 for the array of h-vectors associated with type D_n polytopes.

(End)

The n-th row consists of the coefficients of the polynomial P_n(t) = int((1 + t^2 - 2*t*cos(s))^n, s = 0..2*Pi)/Pi/2. For example, when n = 3, we get P_3(t) = t^6 + 9*t^4 + 9*t^2 + 1; the coefficients are 1, 9, 9, 1. - Theodore Kolokolnikov, Oct 26 2010

Let E(y) = sum {n >= 0} y^n/n!^2 = BesselJ(0, 2*sqrt(-y)). Then this triangle is the generalized Riordan array (E(y), y) with respect to the sequence n!^2 as defined in Wang and Wang. - Peter Bala, Jul 24 2013

REFERENCES

T. K. Petersen, Eulerian Numbers, Birkhauser, 2015, Chapter 12.

J. Riordan, An introduction to combinatorial analysis, Dover Publications, Mineola, NY, 2002, page 191, Problem 15. MR1949650

P. G. Tait, On the Linear Differential Equation of the Second Order, Proceedings of the Royal Society of Edinburgh, 9 (1876), 93-98 (see p. 97) [From Tom Copeland, Sep 09 2010, vol number corrected Sep 10 2010]

LINKS

G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened

N. Alexeev, A. Tikhomirov, Singular Values Distribution of Squares of Elliptic Random Matrices and type-B Narayana Polynomials, arXiv preprint arXiv:1501.04615 [math.PR], 2015.

F. Ardila, M. Beck, S. Hosten, J. Pfeifle and K. Seashore, Root polytopes and growth series of root lattices, arXiv:0809.5123 [math.CO], 2008.

P. Bala, A commutative diagram of triangular arrays

Paul Barry and Aoife Hennessy, Generalized Narayana Polynomials, Riordan Arrays, and Lattice Paths, Journal of Integer Sequences, Vol. 15, 2012, #12.4.8.

Carl M. Bender and Gerald V. Dunne, Polynomials and operator orderings, J. Math. Phys. 29 (1988), 1727-1731.

John H. Conway and N. J. A. Sloane, Low-dimensional lattices. VII Coordination sequences, Proc. R. Soc. Lond. A (1997) 453, 2369-2389.

R. Cori, G. Hetyei, Counting genus one partitions and permutations, arXiv preprint arXiv:1306.4628 [math.CO], 2013.

R. Cori, G. Hetyei, How to count genus one partitions, FPSAC 2014, Chicago, Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France, 2014, 333-344.

Sergey Fomin and Nathan Reading, Root systems and generalized associahedra, Lecture notes for IAS/Park-City 2004, arXiv:math/0505518 [math.CO], 2005, 2008. [From Peter Bala, Oct 23 2008]

Wolfdieter Lang, On Generating functions of Diagonals Sequences of Sheffer and Riordan Number Triangles, arXiv:1708.01421 [math.NT], August 2017.

Abdelkader Necer, Series formelles et produit de Hadamard, Journal de théorie des nombres de Bordeaux, 9:2 (1997), pp. 319-335.

Weiping Wang and Tianming Wang, Generalized Riordan array, Discrete Mathematics, Vol. 308, No. 24, 6466-6500.

Yi Wang and Arthur L.B. Yang, Total positivity of Narayana matrices, arXiv:1702.07822 [math.CO], 2017.

FORMULA

E.g.f.: exp((1+y)*x)*BesselI(0, 2*sqrt(y)*x). - Vladeta Jovovic, Nov 17 2003

G.f.: 1/sqrt(1-2*x-2*x*y+x^2-2*x^2*y+x^2*y^2); g.f. for row n: (1-t)^n P_n[(1+t)/(1-t)] where the P_n's are the Legendre polynomials. - Emeric Deutsch, Nov 23 2003 [The original version of the bivariate g.f. has been modified with the roles of x and y interchanged so that now x corresponds to n and y to k. - Petros Hadjicostas, Oct 22 2017]

G.f. for column k is sum(C(k, j)^2*x^(k+j), j, 0, k)/(1-x)^(2k+1). - Paul Barry, Nov 15 2005

Column k has g.f. x^k*Legendre_P(k, (1+x)/(1-x))/(1-x)^(k+1) = x^k*sum{j = 0..k, C(k, j)^2*x^j}/(1-x)^(2k+1). - Paul Barry, Nov 19 2005

Let E be the operator D*x*D, where D denotes the derivative operator d/dx. Then 1/n!^2 * E^n(1/(1-x)) = (row n generating polynomial)/(1-x)^(2n+1) = sum_{k = 0..inf} binomial(n + k, k)^2*x^k. For example, when n = 3 we have 1/3!^2*E^3(1/(1-x)) = (1 + 9*x + 9*x^2 + x^3)/(1-x)^7 = 1/3!^2 * sum_{k = 0..inf} [(k+1)*(k+2)*(k+3)]^2*x^k. - Peter Bala, Oct 23 2008

G.f.: A(x, y) = Sum_{n >= 0} (2n)!/n!^2 * x^(2n)*y^n/(1-x-x*y)^(2n+1). - Paul D. Hanna, Oct 31 2010

From Peter Bala, Jul 24 2013: (Start)

Let E(y) = sum_{n >= 0} y^n/n!^2 = BesselJ(0, 2*sqrt(-y)). Generating function: E(y)*E(x*y) = 1 + (1 + x)*y + (1 + 4*x + x^2)*y^2/2!^2 + (1 + 9*x + 9*x^2 + x^3)*y^3/3!^2 + .... Cf. the unsigned version of A021009 with generating function exp(y)*E(x*y).

The n-th power of this array has the generating function E(y)^n*E(x*y). In particular, the matrix inverse A055133 has the generating function E(x*y)/E(y). (End)

T(n,k) = T(n-1,k)*(n+k)/(n-k)+T(n-1,k-1), T(n,0)=T(n,n)=1. - Vladimir Kruchinin, Oct 18 2014

Observe that the recurrence T(n,k) = T(n-1,k)*(n+k)/(n-k) - T(n-1,k-1), for n >= 2 and 1 <= k < n, with boundary conditions T(n,0) = T(n,n) = 1 gives Pascal's triangle A007318. - Peter Bala, Dec 21 2014

n-th row polynomial R(n,x) = [z^n] (1 + (1 + x)*z + x*z^2)^n. Note that 1/n*[z^(n-1)] (1 + (1 + x)*z + x*z^2)^n gives the row polynomials of A001263. - Peter Bala, Jun 24 2015

Binomial transform of A105868. If G(x,t) = 1/sqrt(1 - 2*(1 + t)*x + (1 - t)^2*x^2) denotes the o.g.f. of this array then 1 + x*d/dx(log(G(x,t)) = 1 + (1 + t)*x + (1 + 6*t + t^2)*x^2 + ... is the o.g.f. for A086645. - Peter Bala, Sep 06 2015

T(n,k) = Sum_{i=0..n} C(n-i,k)*C(n,i)*C(n+i,i)*(-1)^(n-i-k). - Vladimir Kruchinin, Jan 14 2018

T(n,k) = A007318(n,k)^2. - Sean A. Irvine, Mar 29 2018

EXAMPLE

Pascal's triangle begins

  1

  1  1

  1  2   1

  1  3   3   1

  1  4   6   4   1

  1  5  10  10   5   1

  1  6  15  20  15   6   1

  1  7  21  35  35  21   7   1

so then this triangle begins

  1

  1   1

  1   4    1

  1   9    9     1

  1  16   36    16     1

  1  25  100   100    25    1

  1  36  225   400   225   36   1

  1  49  441  1225  1225  441  49   1

MAPLE

binomial(n, k)^2;

MATHEMATICA

Table[Binomial[n, k]^2, {n, 0, 11}, {k, 0, n}]//Flatten (* Alonso del Arte, Dec 08 2013 *)

PROG

(PARI) {T(n, k) = if( k<0 || k>n, 0, binomial(n, k)^2)}; /* Michael Somos, May 03 2004 */

(PARI) {T(n, k)=polcoeff(polcoeff(sum(m=0, n, (2*m)!/m!^2*x^(2*m)*y^m/(1-x-x*y+x*O(x^n))^(2*m+1)), n, x), k, y)} \\ Paul D. Hanna, Oct 31 2010

(Maxima) create_list(binomial(n, k)^2, n, 0, 12, k, 0, n); \\ Emanuele Munarini, Mar 11 2011

(Maxima) T(n, k):=if n=k then 1 else if k=0 then 1 else T(n-1, k)*(n+k)/(n-k)+T(n-1, k-1); /* Vladimir Kruchinin, Oct 18 2014 */

(MAGMA) /* As triangle */ [[Binomial(n, k)^2: k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Dec 15 2016

(GAP) Flat(List([0..10], n->List([0..n], k->Binomial(n, k)^2))); # Muniru A Asiru, Mar 30 2018

CROSSREFS

Row sums are in A000984. Columns 0-3 are A000012, A000290, A000537, A001249.

Cf. A007318, A055133, A116647, A001263, A086645, A063007, A108558, A108625(Hilbert transform), A145903, A181543, A086645 (logarithmic derivative), A105868 (inverse binomial transform).

Sequence in context: A177944 A174006 A124216 * A259333 A180960 A157192

Adjacent sequences:  A008456 A008457 A008458 * A008460 A008461 A008462

KEYWORD

nonn,tabl,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 21 04:22 EDT 2018. Contains 313932 sequences. (Running on oeis4.)