login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A086645 Triangle read by rows: T(n; k) = Binomial(2*n; 2*k). 28
1, 1, 1, 1, 6, 1, 1, 15, 15, 1, 1, 28, 70, 28, 1, 1, 45, 210, 210, 45, 1, 1, 66, 495, 924, 495, 66, 1, 1, 91, 1001, 3003, 3003, 1001, 91, 1, 1, 120, 1820, 8008, 12870, 8008, 1820, 120, 1, 1, 153, 3060, 18564, 43758, 43758, 18564, 3060, 153, 1, 1, 190, 4845, 38760 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

Elements have the same parity as those of Pascal's triangle.

Coefficients of polynomials 1/2[(1+x^(1/2))^(2n) + (1-x^(1/2))^(2n)].

Number of compositions of 2n having k parts greater than 1; example : T(3, 2) = 15 because we have 4+2, 2+4, 3+2+1, 3+1+2, 2+3+1, 2+1+3, 1+3+2, 1+2+3, 2+2+1+1, 2+1+2+1, 2+1+1+2, 1+2+2+1, 1+2+1+2, 1+1+2+2, 3+3 . - Philippe Deléham, May 18 2005

Number of binary words of length 2n - 1 having k runs of consecutive 1's; example : T(3,2) = 15 because we have 00101, 01001, 01010, 01011, 01101, 10001, 10010, 10011, 10100, 10110, 10111, 11001, 11010, 11011, 11101 . - Philippe Deléham, May 18 2005

Let M_n be the n X n matrix M_n(i, j) = T(i, j-1); then for n>0 det(M_n) = A000364(n), Euler numbers; example : det([1, 1, 0, 0; 1, 6, 1, 0; 1, 15, 15, 1; 1, 28, 70, 28 ]) = 1385 = A000364(4) . -Philippe Deléham, Sep 04 2005

Equals ConvOffsStoT transform of the hexagonal numbers, A000384: (1, 6, 15, 28, 45,...); e.g. ConvOffs transform of (1, 6, 15, 28) = (1, 28, 70, 28, 1). - Gary W. Adamson, Apr 22 2008

From Peter Bala, Oct 23 2008: (Start)

Let C_n be the root lattice generated as a monoid by {+-2*e_i: 1 <= i <= n; +-e_i +- e_j: 1 <= i not equal to j <= n}. Let P(C_n) be the polytope formed by the convex hull of this generating set. Then the rows of this array are the h-vectors of a unimodular triangulation of P(C_n) [Ardila et al.]. See A127674 for (a signed version of) the corresponding array of f-vectors for these type C_n polytopes. See A008459 for the array of h-vectors for type A_n polytopes and A108558 for the array of h-vectors associated with type D_n polytopes.

The Hilbert transform of this triangle is A142992 (see A145905 for the definition of this term).

(End)

Diagonal sums : A108479 . [Philippe Deléham, Sep 08 2009]

Coefficients of <math>\prod_{k=1}^n(\cot^2\frac{k\pi}{2n+1}-x)=\sum_0^n\frac{(-1)^k}{2n+1-2k}{2n \choose 2k}x^k </math> [David Ingerman (daviddavifree(AT)gmail.com), Mar 30 2010]

Generalized Narayana triangle for 4^n (or cosh(2x)). [Paul Barry, Sep 28 2010]

Coefficients of the matrix inverse appear to be T^(-1)(n,k) = (-1)^(n+k)*A086646(n,k). - R. J. Mathar, Mar 12 2013

Let E(y) = sum {n >= 0} y^n/(2*n)! = cosh(sqrt(y)). Then this triangle is the generalized Riordan array (E(y), y) with respect to the sequence (2*n)! as defined in Wang and Wang. Cf. A103327. - Peter Bala, Aug 06 2013

REFERENCES

A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 224.

LINKS

Table of n, a(n) for n=0..58.

F. Ardila, M. Beck, S. Hosten, J. Pfeifle and K. Seashore, Root polytopes and growth series of root lattices arXiv:0809.5123 [math.CO]

T. Copeland, Infinitesimal Generators, the Pascal Pyramid, and the Witt and Virasoro Algebras

W. Wang and T. Wang, Generalized Riordan array, Discrete Mathematics, Vol. 308, No. 24, 6466-6500.

FORMULA

T(n; k) = (2*n)!/((2*(n-k))!*(2*k)!) row sums = A081294. COLUMNS :A000012, A000384

Sum_{k>=0} T(n, k)*A000364(k) = A000795(n) = (2^n)*A005647(n).

Sum_{k>=0} T(n, k)*2^k = A001541(n). Sum_{k>=0} T(n, k)*3^k = 2^n*A001075(n). Sum_{k>=0} T(n, k)*4^k = A083884(n). - Philippe Deléham, Feb 29 2004

O.g.f.: (1 - z*(1+x))/(x^2*z^2 - 2*x*z*(1+z) + (1-z)^2) = 1 + (1 + x)*z +(1 + 6*x + x^2)*z^2 + ... . [Peter Bala, Oct 23 2008]

Sum{k, 0<=k<=n}T(n,k)*x^k = A000007(n), A081294(n), A001541(n), A090965(n), A083884(n), A099140(n), A099141(n), A099142(n), A165224(n), A026244(n) for x = 0,1,2,3,4,5,6,7,8,9 respectively . [Philippe Deléham, Sep 08 2009]

<math>\prod_{k=1}^n(\cot^2\frac{k\pi}{2n+1}-x)=\sum_0^n\frac{(-1)^k}{2n+1-2k}{2n \choose 2k}x^k </math> [David Ingerman (daviddavifree(AT)gmail.com), Mar 30 2010]

From Paul Barry, Sep 28 2010: (Start)

G.f.: 1/(1-x-xy-4*x^2y/(1-x-xy))=(1-x(1+y))/(1-2x(1+y)+x^2(1-y)^2);

E.g.f.: exp((1+y)x)*cosh(2*sqrt(y)x);

T(n,k) = sum{j=0..n, C(n,j)*C(n-j,2(k-j))*4^(k-j)}. (End)

T(n,k) = 2*T(n-1,k)+2*T(n-1,k-1)+2*T(n-2,k-1)-T(n-2,k)-T(n-2,k-2), with T(0,0)=T(1,0)=T(1,1)=1, T(n,k)=0 if k<0 or if k>n. - Philippe Deléham, Nov 26 2013

EXAMPLE

Contribution from Peter Bala, Oct 23 2008: (Start)

The triangle begins

n\k|..0.....1.....2.....3.....4.....5.....6

===========================================

0..|..1

1..|..1.....1

2..|..1.....6.....1

3..|..1....15....15.....1

4..|..1....28....70....28.....1

5..|..1....45...210...210....45.....1

6..|..1....66...495...924...495....66.....1

...

(End)

From Peter Bala, Aug 06 2013: (Start)

Viewed as the generalized Riordan array (cosh(sqrt(y)), y) with respect to the sequence (2*n)! the column generating functions begin

1st col: cosh(sqrt(y)) = 1 + y/2! + y^2/4! + y^3/6! + y^4/8! + ....

2nd col: 1/2!*y*cosh(sqrt(y)) = y/2! + 6*y^2/4! + 15*y^3/6! + 28*y^4/8! + ....

3rd col: 1/4!*y^2*cosh(sqrt(y)) = y^2/4! + 15*y^3/6! + 70*y^4/8! + 210*y^5/10! + .... (End)

MAPLE

A086645:=(n, k)->binomial(2*n, 2*k): seq(seq(A086645(n, k), k=0..n), n=0..12);

PROG

(PARI) {T(n, k) = binomial(2*n, 2*k)}

(PARI) {T(n, k) = sum( i=0, min(k, n-k), 4^i * binomial(n, 2*i) * binomial(n - 2*i, k-i))} /* Michael Somos, May 26 2005 */

(Maxima) create_list(binomial(2*n, 2*k), n, 0, 12, k, 0, n); /* Emanuele Munarini, Mar 11 2011 */

CROSSREFS

Cf. A000012, A000384, A081294.

Cf. A008459, A108558, A127674, A142992. [From Peter Bala, Oct 23 2008]

Cf. A103327 (binomial(2n+1, 2k+1)), A103328 (binomial(2n, 2k+1)), A091042 (binomial(2n+1, 2k)). [Wolfdieter Lang, Jan 06 2013]

Cf. A086646 (unsigned matrix inverse), A103327.

Sequence in context: A143210 A205133 A152238 * A168291 A154980 A166344

Adjacent sequences:  A086642 A086643 A086644 * A086646 A086647 A086648

KEYWORD

easy,nonn,tabl

AUTHOR

Philippe Deléham, Jul 26 2003

EXTENSIONS

More terms from Emeric Deutsch, May 24 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 22 07:03 EST 2014. Contains 252328 sequences.