login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A063007 Triangle: T(n,k) = C(n,k)*C(n+k,k) read by rows. 54
1, 1, 2, 1, 6, 6, 1, 12, 30, 20, 1, 20, 90, 140, 70, 1, 30, 210, 560, 630, 252, 1, 42, 420, 1680, 3150, 2772, 924, 1, 56, 756, 4200, 11550, 16632, 12012, 3432, 1, 72, 1260, 9240, 34650, 72072, 84084, 51480, 12870, 1, 90, 1980, 18480, 90090, 252252, 420420, 411840, 218790, 48620 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

T(n,k) is the number of compatible k-sets of cluster variables in Fomin and Zelevinsky's Cluster algebra of finite type B_n. Take a row of this triangle regarded as a polynomial in x and rewrite as a polynomial in y := x+1. The coefficients of the polynomial in y give a row of triangle A008459 (squares of binomial coefficients). For example, x^2+6*x+6 = y^2+4*y+1. - Paul Boddington, Mar 07 2003

T(n,k) is the number of lattice paths from (0,0) to (n,n) using steps E=(1,0), N=(0,1) and D=(1,1) (i.e., bilateral Schroeder paths), having k N=(0,1) steps. E.g. T(2,0)=1 because we have DD; T(2,1)=6 because we have NED, NDE, EDN, END, DEN and DNE; T(2,2)=6 because we have NNEE, NENE, NEEN, EENN, ENEN and ENNE. - Emeric Deutsch, Apr 20 2004

Another version of [1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, . . .] DELTA [0, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, . . . ] = 1; 1, 0; 1, 2, 0; 1, 6, 6, 0; 1, 12, 30, 20, 0; . . ., where DELTA is the operator defined in A084938. - Philippe Deléham Apr 15 2005

Terms in row n are the coefficients of the Legendre polynomial P(n,2x+1) with increasing powers of x.

From Peter Bala, Oct 28 2008: (Start)

Row n of this triangle is the f-vector of the simplicial complex dual to an associahedron of type B_n (a cyclohedron) [Fomin & Reading, p.60]. See A008459 for the corresponding h-vectors for associahedra of type B_n and A001263 and A033282 respectively for the h-vectors and f-vectors for associahedra of type A_n.

An alternative description of this triangle in terms of f-vectors is as follows. Let A_n be the root lattice generated as a monoid by {e_i - e_j: 0 <= i,j <= n+1}. Let P(A_n) be the polytope formed by the convex hull of this generating set. Then the rows of this array are the f-vectors of a unimodular triangulation of P(A_n) [Ardila et al.]. A008459 is the corresponding array of h-vectors for these type A_n polytopes. See A127674 (without the signs) for the array of f-vectors for type C_n polytopes and A108556 for the array of f-vectors associated with type D_n polytopes.

The S-transform on the ring of polynomials is the linear transformation of polynomials that is defined on the basis monomials x^k by S(x^k) = binomial(x,k) = x(x-1)...(x-k+1)/k!. Let P_n(x) denote the S-transform of the n-th row polynomial of this array. In the notation of [Hetyei] these are the Stirling polynomials of the type B associahedra. The first few values are P_1(x) = 2*x + 1, P_2(x) = 3*x^2 + 3*x + 1 and P_3(x) = (10*x^3 + 15*x^2 + 11*x + 3)/3. These polynomials have their zeros on the vertical line Re x = -1/2 in the complex plane, that is, the polynomials P_n(-x) satisfy a Riemann hypothesis. See A142995 for further details. The sequence of values P_n(k) for k = 0,1,2,3, ... produces the n-th row of A108625. (End)

This is the row reversed version of triangle A104684. - Wolfdieter Lang, Sep 12 2016

REFERENCES

J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 366.

D. Zagier, Integral solutions of Apery-like recurrence equations, in: Groups and Symmetries: from Neolithic Scots to John McKay, CRM Proc. Lecture Notes 47, Amer. Math. Soc., Providence, RI, 2009, pp. 349-366.

LINKS

T. D. Noe, Rows n=0..100 of triangle, flattened

F. Ardila, M. Beck, S. Hosten, J. Pfeifle and K. Seashore, Root polytopes and growth series of root lattices, arXiv:0809.5123 [math.CO], 2008.

P. Barry, Continued fractions and transformations of integer sequences, JIS 12 (2009) 09.7.6

H. J. Brothers, Pascal's Prism: Supplementary Material.

F. Chapoton, Enumerative properties of generalized associahedra

Johann Cigler, Some remarks and conjectures related to lattice paths in strips along the x-axis, arXiv:1501.04750 [math.CO], 2015-2016.

Mark Dukes, Chris D. White, Web Matrices: Structural Properties and Generating Combinatorial Identities, arXiv:1603.01589 [math.CO], 2016.

Mark Dukes, Chris D. White, Web Matrices: Structural Properties and Generating Combinatorial Identities, Electronic Journal Of Combinatorics, 23(1) (2016), #P1.45

S. Fomin and N. Reading, Root systems and generalized associahedra, Lecture notes for IAS/Park-City 2004. [From Peter Bala, Oct 28 2008]

S. Fomin and A. Zelevinsky, Cluster algebras I: Foundations, J. Amer. Math. Soc. 15 (2002), no. 2, 497-529.

S. Fomin and A. Zelevinsky, Y-systems and generalized associahedra, Ann. of Math. (2) 158 (2003), no. 3, 977-1018.

G. Hetyei, Face enumeration using generalized binomial coefficients. This is the draft version of Hetyei's paper referenced below. [From Peter Bala, Oct 28 2008]

Gabor Hetyei, The Stirling polynomial of a simplicial complex Discrete and Computational Geometry 35, Number 3, March 2006, pp 437-455. [From Peter Bala, Oct 28 2008]

C. Lanczos, Applied Analysis (Annotated scans of selected pages) See page 514.

T. Manneville, V. Pilaud, Compatibility fans for graphical nested complexes, arXiv preprint arXiv:1501.07152 [math.CO], 2015.

V. Strehl, Recurrences and Legendre transform, Séminaire Lotharingien de Combinatoire, B29b (1992), 22 pp.

R. A. Sulanke, Objects counted by the central Delannoy numbers., J. Integer Seq. 6 (2003), no. 1, Article 03.1.5.

D. Zagier, Integral solutions of Apery-like recurrence equations.

FORMULA

T(n, k) = (n+k)!/(k!^2*(n-k)!) = T(n-1, k)*(n+k)/(n-k) = T(n, k-1)*(n+k)*(n-k+1)/k^2 = T(n-1, k-1)*(n+k)*(n+k-1)/k^2.

binomial( x, n)^2 = Sum_{k>=0} T(n ,k) * binomial( x, n+k). - Michael Somos, May 11 2012

T(n, k) = A109983(n, k+n). - Michael Somos, Sep 22 2013

G.f.: G(t, z)=1/sqrt(1-2z-4tz+z^2). Row generating polynomials=P_n(1+2z), i.e. T(n, k)=[z^k]P_n(1+2z), where P_n are the Legendre polynomials. - Emeric Deutsch, Apr 20 2004

Sum_{k>=0} T(n, k)*A000172(k) = Sum_{k>=0} T(n, k)^2 = A005259(n). - Philippe Deléham, Jun 08 2005

1 + z*d/dz(log(G(t,z)) = 1 + (1 + 2*t)*z + (1 + 8*t + 8*t^2)*z^2 + ... is the o.g.f. for a signed version of A127674. - Peter Bala, Sep 02 2015

If R(n,t) denotes the n-th row polynomial then x^3 * exp( Sum_{n >= 1} R(n,t)*x^n/n ) = x^3 + (1 + 2*t)*x^4 + (1 + 5*t + 5*t^2)*x^5 + (1 + 9*t + 21*t^2 + 14*t^3)*x^6 + ... is an o.g.f for A033282. - Peter Bala, Oct 19 2015

P(n,x) := 1/(1 + x)*Int_{0..x} R(n,t) dt are (modulo differences of offset) the row polynomials of A033282. - Peter Bala, Jun 23 2016

EXAMPLE

The triangle T(n, k) starts:

n\k 1  2    3    4     5     6     7     8

0:  1

1:  1  2

2:  1  6    6

3:  1 12   30   20

4:  1 20   90  140    70

5:  1 30  210  560   630   252

6:  1 42  420 1680  3150  2772   924

7:  1 56  756 4200 11550 16632 12012  3432

...

row n = 8: 1 72 1260 9240 34650 72072 84084 51480 12870,

row n = 9: 1 90 1980 18480 90090 252252 420420 411840 218790 48620,

row n = 10: 1 110 2970 34320 210210 756756 1681680 2333760 1969110 923780 184756.

...  reformatted by Wolfdieter Lang, Sep 12 2016

MAPLE

with(orthopoly): seq([1, seq(coeff(expand(P(n, 1+2*z)), z^k), k=1..n)], n=0..9);

MATHEMATICA

Flatten[Table[Binomial[n, k]Binomial[n+k, k], {n, 0, 10}, {k, 0, n}]] (* Harvey P. Dale, Dec 24 2011 *)

PROG

(PARI) {T(n, k) = local(t); if( n<0, 0, t = (x + x^2)^n; for( k=1, n, t=t'); polcoeff(t, k) / n!)} /* Michael Somos, Dec 19 2002 */

(PARI) {T(n, k) = binomial(n, k) * binomial(n+k, k)} /* Michael Somos, Sep 22 2013 */

(PARI) {T(n, k) = if( k<0 || k>n, 0, (n+k)! / (k!^2 * (n-k)!))} /* Michael Somos, Sep 22 2013 */

(Haskell)

a063007 n k = a063007_tabl !! n !! k

a063007_row n = a063007_tabl !! n

a063007_tabl = zipWith (zipWith (*)) a007318_tabl a046899_tabl

-- Reinhard Zumkeller, Nov 18 2014

(MAGMA) /* As triangle: */ [[Binomial(n, k)*Binomial(n+k, k): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Sep 03 2015

CROSSREFS

Columns include A000012, A002378, A033487 on the left and A000984, A002457, A002544 on the right.

Main diagonal is A006480.

Row sums are A001850. Alternating row sums are A033999.

Cf. A008459.

Cf. A104684.

Cf. A033282 (f-vectors type A associahedra), A108625, A080721 (f-vectors type D associahedra).

Cf. A007318, A046899, A109983, A127674.

The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692,A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)

Sequence in context: A208919 A259569 A046651 * A202190 A089231 A052296

Adjacent sequences:  A063004 A063005 A063006 * A063008 A063009 A063010

KEYWORD

nonn,tabl,nice,easy,changed

AUTHOR

Henry Bottomley, Jul 02 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 19 20:48 EST 2018. Contains 299357 sequences. (Running on oeis4.)