login
This site is supported by donations to The OEIS Foundation.

 

Logo

Invitation: celebrating 50 years of OEIS, 250000 sequences, and Sloane's 75th, there will be a conference at DIMACS, Rutgers, Oct 9-10 2014.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A033282 Triangle read by rows: T(n,k) is the number of diagonal dissections of a convex n-gon into k+1 regions. 19
1, 1, 2, 1, 5, 5, 1, 9, 21, 14, 1, 14, 56, 84, 42, 1, 20, 120, 300, 330, 132, 1, 27, 225, 825, 1485, 1287, 429, 1, 35, 385, 1925, 5005, 7007, 5005, 1430, 1, 44, 616, 4004, 14014, 28028, 32032, 19448, 4862, 1, 54, 936, 7644, 34398, 91728, 148512 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

3,3

COMMENTS

T(n+3,k) is also the number of compatible k-sets of cluster variables in Fomin and Zelevinsky's cluster algebra of finite type A_n. Take a row of this triangle regarded as a polynomial in x and rewrite as a polynomial in y := x+1. The coefficients of the polynomial in y give a row of the triangle of Narayana numbers A001263. For example x^2+5*x+5=y^2+3*y+1. - Paul Boddington (psb(AT)maths.warwick.ac.uk), Mar 07 2003

Number of standard Young tableaux of shape (k+1,k+1,1^(n-k-3)), where 1^(n-k-3) denotes a sequence of n-k-3 1's (see the Stanley reference).

Number of k dimensional 'faces' of the n dimensional associahedron (see Simion, p. 168). - Mitch Harris, Jan 16 2007

Mirror image of triangle A126216 . - Philippe Deléham, Oct 19 2007

For relation to Lagrange inversion or series reversion and the geometry of associahedra or Stasheff polytopes (and other combinatorial objects) see A133437. [From Tom Copeland, Sep 29 2008]

Row generating polynomials 1/(n+1)*Jacobi_P(n,1,1,2*x+1). Row n of this triangle is the f-vector of the simplicial complex dual to an associahedron of type A_n [Fomin & Reading, p.60]. See A001263 for the corresponding array of h-vectors for associahedra of type A_n. See A063007 and A080721 for the f-vectors for associahedra of type B and type D respectively. [From Peter Bala, Oct 28 2008]

f-vectors of secondary polytopes for Grobner bases for optimization and integer programming (see De Loera et al. and Thomas). - Tom Copeland, Oct 11 2011

From Devadoss and O'Rourke's book: The Fulton-MacPherson compactification of the configuration space of n free particles on a line segment with a fixed particle at each end is the n-Dim Stasheff associahedron whose refined f-vector is given in A133437 which reduces to A033282. - Tom Copeland, Nov 29 2011

Diagonals of A132081 are rows of A033282. - Tom Copeland, May 08 2012

REFERENCES

Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.4. [From Tom Copeland, Nov 03 2008]

P. Barry, On the Inverses of a Family of Pascal-Like Matrices Defined by Riordan Arrays, Journal of Integer Sequences, 16 (2013), #13.5.6.

D. Beckwith, Legendre polynomials and polygon dissections?, Amer. Math. Monthly, 105 (1998), 256-257.

A. Cayley, On the partitions of a polygon, Proc. London Math. Soc., 22 (1891), 237-262 = Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 13, pp. 93ff. (See p. 239.)

S. Devadoss and J. O'Rourke, Discrete and Computational Geometry, Princeton Univ. Press, 2011 (See pg. 241)

B. Drake, I. M. Gessel and G. Xin, Three proofs and a generalization of the Goulden-Litsyn-Shevelev conjecture ..., J. Integer Sequences, Vol. 10 (2007), #07.3.7.

P. Flajolet and M. Noy, Analytic combinatorics of non-crossing configurations, Discrete Math., 204, 1999, 203-229.

S. Fomin and A. Zelevinsky, Cluster algebras I: Foundations, J. Amer. Math. Soc. 15 (2002) no.2, 497-529.

S. Fomin and A. Zelevinsky, Y-Systems and generalized associahedra, Ann. of Math. (2) 158 (2003), no. 3, 977-1018.

Kreweras, G. Sur les partitions non croisees d'un cycle. (French) Discrete Math. 1 (1972), no. 4, 333--350. MR0309747 (46 #8852)

R. C. Read, On general dissections of a polygon, Aequat. Math. 18 (1978), 370-388.

R. Simion, "Convex Polytopes and Enumeration", Adv. in Appl. Math. 18 (1997) pp. 149-180.

R. P. Stanley, Polygon dissections and standard Young tableaux, J. Comb. Theory, Ser. A, 76, 175-177, 1996.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 3..2000

F. Chapoton, Enumerative properties of generalized associahedra

J. De Loera, J. Rambau, and F. Leal, Triangulations of Point Sets [From Tom Copeland Oct 11 2011]

S. Devadoss, Combinatorial Equivalence of Real Moduli Spaces [From Tom Copeland Nov 29 2011]

P. Flajolet and M. Noy, Analytic Combinatorics of Non-crossing Configurations, Discrete Math., 204, 1999, 203-229.

S. Fomin and N. Reading, Root systems and generalized associahedra, Lecture notes for IAS/Park-City 2004. [From Peter Bala, Oct 28 2008]

S. Fomin and A. Zelevinsky, Cluster algebras I: Foundations, J. Amer. Math. Soc. 15 (2002), no. 2, 497-529.

S. Fomin and A. Zelevinsky, Y-systems and generalized associahedra, Ann. of Math. (2) 158 (2003), no. 3, 977-1018.

J.-C. Novelli, J.-Y. Thibon, Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions, arXiv preprint arXiv:1403.5962, 2014

R. C. Read, On general dissections of a polygon, Aequat. Math. 18 (1978), 370-388.

R. P. Stanley, Polygon dissections and standard Young tableaux, J. Comb. Theory, Ser. A, 76, 175-177, 1996.

R. Thomas, Lectures in Geometric Combinatorics [From Tom Copeland Oct 11 2011]

FORMULA

G.f. G=G(t, z) satisfies (1+t)G^2-z(1-z-2tz)G+tz^4=0.

T(n, k)=binomial(n-3, k)*binomial(n+k-1, k)/(k+1) for n >= 3, 0 <=k <=n-3.

Contribution from Tom Copeland, Nov 03 2008: (Start)

Two g.f.s (f1 and f2) for A033282 and their inverses (x1 and x2) can be derived from the Drake and Barry references.

1. a: f1(x,t) = y = {1 - (2t+1) x - sqrt[1 - (2t+1) 2x + x^2]}/[2x (t+1)]

= t x + (t + 2 t^2) x^2 + (t + 5 t^2 + 5 t^3) x^3 + ...

b: x1 = y/[t + (2t+1)y + (t+1)y^2] = y {1/[t/(t+1) + y] - 1/(1+y)}

= (y/t) - (1+2t)(y/t)^2 + (1+ 3t + 3t^2)(y/t)^3 +...

2. a: f2(x,t) = y = {1 - x - sqrt[(1-x)^2 - 4xt]}/[2(t+1)]

= (t/(t+1)) x + t x^2 + (t + 2 t^2) x^3 + (t + 5 t^2 + 5 t^3) x^4 + ...

b: x2 = y(t+1) [1- y(t+1)]/[t + y(t+1)]

= (t+1) (y/t) - (t+1)^3 (y/t)^2 + (t+1)^4 (y/t)^3 + ...

c: y/x2(y,t) = [t/(t+1) + y] / [1- y(t+1)]

= t/(t+1) + (1+t) y + (1+t)^2 y^2 + (1+t)^3 y^3 + ...

x2(y,t) can be used along with the Lagrange inversion for an o.g.f. (A133437)

to generate A033282 and show that A133437 is a refinement of A033282,

i.e., a refinement of the f-polynomials of the associahedra, the Stasheff polytopes.

y/x2(y,t) can be used along with the indirect Lagrange inversion (A134264)

to generate A033282 and show that A134264 is a refinement of A001263, i.e.,

a refinement of the h-polynomials of the associahedra.

f1[x,t](t+1) gives a generator for A088617.

f1[xt,1/t](t+1) gives a generator for A060693, with inverse y/[1 + t + (2+t) y + y^2].

f1[x(t-1),1/(t-1)]t gives a generator for A001263, with inverse y/[t + (1+t) y + y^2].

The unsigned coefficients of x1(y t,t) are A074909, reverse rows of A135278. (End)

G.f.: 1/(1-x*y-(x+x*y)/(1-x*y/(1-(x+x*y)/(1-x*y/(1-(x+x*y)/(1-x*y/(1-.... (continued fraction). [From Paul Barry, Feb 06 2009]

Let h(t) = (1-t)^2/(1+(u-1)*(1-t)^2) = 1/(u+2*t+3*t^2+4*t^3+...), then a signed (n-1)-th row polynomial of A033282 is given by u^(2n-1)*(1/n!)*((h(t)*d/dt)^n) t, evaluated at t=0, with initial n=2. The power series expansion of h(t) is related to A181289 (cf. A086810). - Tom Copeland, Sep 06 2011

EXAMPLE

Triangle begins:

1;

1,2;

1,5,5;

1,9,21,14;

1,14,56,84,42;

MATHEMATICA

t[n_, k_] = Binomial[n-3, k]*Binomial[n+k-1, k]/(k+1);

Flatten[Table[t[n, k], {n, 3, 12}, {k, 0, n-3}]][[1 ;; 52]] (* Jean-François Alcover, Jun 16 2011 *)

CROSSREFS

Diagonals : A000012, A000096, A033275, A033276, A033277, A033278, A033279; A000108, A002054, A002055, A002056, A007160, A033280, A033281 Row sums : A001003 (Schroeder numbers, first term omitted) . See A086810 for another version.

A007160 is a diagonal. Cf. A001263.

With leading zero: A086810.

Cf. A019538 'faces' of the permutohedron.

Cf. A063007 (f-vectors type B associahedra), A080721 (f-vectors type D associahedra), A126216 (mirror image). [From Peter Bala, Oct 28 2008]

Sequence in context: A021468 A209830 A209695 * A126350 A204111 A079502

Adjacent sequences:  A033279 A033280 A033281 * A033283 A033284 A033285

KEYWORD

nonn,tabl,easy

AUTHOR

N. J. A. Sloane.

EXTENSIONS

Added a missing factor of 2 for expansions of f1 and f2 Tom Copeland, Apr 12 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified July 22 11:25 EDT 2014. Contains 244815 sequences.