This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A002055 Number of diagonal dissections of a convex n-gon into n-4 regions. (Formerly M4639 N1982) 9
 1, 9, 56, 300, 1485, 7007, 32032, 143208, 629850, 2735810, 11767536, 50220040, 212952285, 898198875, 3771484800, 15775723920, 65770848990, 273420862110, 1133802618000, 4691140763400, 19371432850770, 79850555673174 (list; graph; refs; listen; history; text; internal format)
 OFFSET 5,2 COMMENTS Number of standard tableaux of shape (n-4,n-4,1,1) (see Stanley reference). - Emeric Deutsch, May 20 2004 Number of increasing tableaux of shape (n-2,n-2) with largest entry 2n-6. An increasing tableau is a semistandard tableau with strictly increasing rows and columns, and set of entries an initial segment of the positive integers. - Oliver Pechenik, May 02 2014 a(n) = number of noncrossing partitions of 2n-6 into n-4 blocks, each of size at least 2. - Oliver Pechenik, May 02 2014 REFERENCES N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS T. D. Noe, Table of n, a(n) for n = 5..100 D. Beckwith, Legendre polynomials and polygon dissections?, Amer. Math. Monthly, 105 (1998), 256-257. A. Cayley, On the partitions of a polygon, Proc. London Math. Soc., 22 (1891), 237-262 = Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 13, pp. 93ff. P. Lisonek, Closed forms for the number of polygon dissections, Journal of Symbolic Computation 20 (1995), 595-601. O. Pechenik, Cyclic sieving of increasing tableaux and small Schröder paths, arXiv:1209.1355 [math.CO], 2012-2014. O. Pechenik, Cyclic sieving of increasing tableaux and small Schröder paths, J. Combin. Theory A, 125 (2014), 357-378. R. C. Read, On general dissections of a polygon, Preprint (1974) C. R. Read, On general dissections of a polygon, Aequat. math. 18 (1978) 370-388, Table 1. R. P. Stanley, Polygon dissections and standard Young tableaux, J. Comb. Theory, Ser. A, 76, 175-177, 1996. FORMULA a(n) = binomial(n-3, 2)*binomial(2*n-6, n-5)/(n-4). With offset 0, this has a(n)=(n+2)*C(2n+4,n)/2 and e.g.f. dif(dif(x*dif(exp(2x)*Bessel_I(2,2x),x),x),x)/2. - Paul Barry, Aug 25 2007 G.f.: 16*x^5*(x+sqrt(1-4x))/((1-4x)^(3/2) *(1+sqrt(1-4x))^4 ). - R. J. Mathar, Nov 17 2011 Conjecture: (n-1)*a(n) +(23-11n)*a(n-1) +10*(4n-13)*a(n-2) +10*(23-5n)*a(n-3) +4*(2n-13)*a(n-4)=0. - R. J. Mathar, Nov 17 2011 a(n) ~ 4^n*sqrt(n)/(128*sqrt(Pi)). - Ilya Gutkovskiy, Apr 11 2017 MATHEMATICA Table[(Binomial[n-3, 2]Binomial[2n-6, n-5])/(n-4), {n, 5, 30}] (* Harvey P. Dale, Nov 06 2011 *) PROG (PARI) a(n) = (binomial(n - 3, 2) * binomial(2*n - 6, n - 5))/(n - 4); for(n=5, 30, print1(a(n), ", ")) \\ Indranil Ghosh, Apr 11 2017 CROSSREFS a(n) = f(n,n+1) where f is given in A034261. Sequence in context: A196861 A211844 A172065 * A026842 A026846 A026849 Adjacent sequences:  A002052 A002053 A002054 * A002056 A002057 A002058 KEYWORD nonn,nice,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 15 13:06 EDT 2019. Contains 328030 sequences. (Running on oeis4.)