login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A033999 a(n) = (-1)^n. 132
1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

(-1)^(n+1) = signed area of parallelogram with vertices (0,0), U=(F(n),F(n+1)), V=(F(n+1),F(n+2)), where F = A000045 (Fibonacci numbers). The area of every such parallelogram is 1. The signed area is -1 if and only if F(n+1)^2 > F(n)*F(n+2), or, equivalently, n is even, or, equivalently, the vector U is "above" V, indicating that U and V "cross" as n -> n+1. - Clark Kimberling, Sep 09 2013

Periodic with period length 2. - Ray Chandler, Apr 03 2017

LINKS

Table of n, a(n) for n=0..88.

Paul Barry, Characterizations of the Borel triangle and Borel polynomials, arXiv:2001.08799 [math.CO], 2020.

F. Javier de Vega, An extension of Furstenberg's theorem of the infinitude of primes, arXiv:2003.13378 [math.NT], 2020.

S. K. Ghosal, J. K. Mandal, Stirling Transform Based Color Image Authentication, Procedia Technology, 2013 Volume 10, 2013, Pages 95-104.

Tanya Khovanova, Recursive Sequences

László Németh, The trinomial transform triangle, J. Int. Seqs., Vol. 21 (2018), Article 18.7.3. Also arXiv:1807.07109 [math.NT], 2018.

M. Somos, Rational Function Multiplicative Coefficients

Eric Weisstein's World of Mathematics, Inverse Tangent

Eric Weisstein's World of Mathematics, Stirling Transform

Wikipedia, Grandi's series

Wikipedia, +/-1-sequence

Wikipedia, Dirichlet eta function

Index entries for linear recurrences with constant coefficients, signature (-1).

Index to sequences related to inverse of cyclotomic polynomials

FORMULA

G.f.: 1/(1+x).

E.g.f.: exp(-x).

Linear recurrence: a(0)=1, a(n)=-a(n-1) for n>0. - Jaume Oliver Lafont, Mar 20 2009

Sum_{k=0..n} a(k) = A059841(n). - Jaume Oliver Lafont, Nov 21 2009

Sum_{k>=0} a(k)/(k+1) = log(2). - Jaume Oliver Lafont, Mar 30 2010

Euler transform of length 2 sequence [ -1, 1]. - Michael Somos, Mar 21 2011

Moebius transform is length 2 sequence [ -1, 2]. - Michael Somos, Mar 21 2011

a(n) = -b(n) where b(n) = multiplicative with b(2^e) = -1 if e>0, b(p^e) = 1 if p>2. - Michael Somos, Mar 21 2011

a(n) = a(-n) = a(n + 2) = cos(n * Pi). a(n) = c_2(n) if n>1 where c_k(n) is Ramanujan's sum. - Michael Somos, Mar 21 2011

a(n) = (1/2)*Product_{k=0..2*n-1} 2*cos((2*k+1)*Pi/(4*n)), n >= 1. See the product given in the Oct 21 2013 formula comment in A056594, and replace there n -> 2*n. - Wolfdieter Lang, Oct 23 2013

D.g.f.: (2^(1-s)-1)*zeta(s) = -eta(s) (the Dirichlet eta function). - Ralf Stephan, Mar 27 2015

From Ilya Gutkovskiy, Aug 17 2016: (Start)

a(n) = T_n(-1), where T_n(x) are the Chebyshev polynomials of the first kind.

Binomial transform of A122803. (End)

a(n) = exp(i*Pi*n) = exp(-i*Pi*n). - Carauleanu Marc, Sep 15 2016

a(n) = Sum_{k=0..n} (-1)^k*A063007(n, k), n >= 0. - Wolfdieter Lang, Sep 13 2016

EXAMPLE

G.f. = 1 - x + x^2 - x^3 + x^4 - x^5 + x^6 - x^7 + x^8 - x^9 + x^10 - x^11 + x^12 + ...

MAPLE

A033999 := n->(-1)^n: seq(A033999(n), n=0..100);

MATHEMATICA

Table[(-1)^n, {n, 0, 88}] (* Alonso del Arte, Nov 30 2009 *)

PadRight[{}, 89, {1, -1}] (* Arkadiusz Wesolowski, Sep 16 2012 *)

PROG

(PARI) a(n)=1-2*(n%2) /* Jaume Oliver Lafont, Mar 20 2009 */

(Haskell)

a033999 = (1 -) . (* 2) . (`mod` 2)

a033999_list = cycle [1, -1] -- Reinhard Zumkeller, May 06 2012, Jan 02 2012

(MAGMA) [(-1)^n : n in [0..100]]; // Wesley Ivan Hurt, Nov 19 2014

CROSSREFS

Cf. A056594, A059841, A063007, A122803.

Sequence in context: A076479 A155040 A209661 * A000012 A216430 A232544

Adjacent sequences:  A033996 A033997 A033998 * A034000 A034001 A034002

KEYWORD

sign,easy

AUTHOR

Vasiliy Danilov (danilovv(AT)usa.net), Jun 15 1998

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 24 01:49 EST 2020. Contains 338603 sequences. (Running on oeis4.)