login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A033999 a(n) = (-1)^n. 103
1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

(-1)^(n+1) = signed area of parallelogram with vertices (0,0), U=(F(n),F(n+1)), V=(F(n+1),F(n+2)), where F = A000045 (Fibonacci numbers). The area of every such parallelogram is 1. The signed area is -1 if and only if F(n+1)^2 > F(n)*F(n+2), or, equivalently, n is even, or, equivalently, the vector U is "above" V, indicating that U and V "cross" as n -> n+1. - Clark Kimberling, Sep 09 2013

LINKS

Table of n, a(n) for n=0..88.

S. K. Ghosal, J. K. Mandal, Stirling Transform Based Color Image Authentication, Procedia Technology, 2013 Volume 10, 2013, Pages 95-104.

Tanya Khovanova, Recursive Sequences

M. Somos, Rational Function Multiplicative Coefficients

Eric Weisstein's World of Mathematics, Inverse Tangent

Eric Weisstein's World of Mathematics, Stirling Transform

Wikipedia, Grandi's series

Wikipedia, +/-1-sequence

Wikipedia, Dirichlet eta function

Index entries for linear recurrences with constant coefficients, signature (-1).

FORMULA

G.f.: 1/(1+x).

E.g.f.: exp(-x).

Linear recurrence: a(0)=1, a(n)=-a(n-1) for n>0. [Jaume Oliver Lafont, Mar 20 2009]

Sum_{0<=k<=n} a(k) = A059841(n). [Jaume Oliver Lafont, Nov 21 2009]

Sum_{k>=0} a(k)/(k+1) = log(2). [Jaume Oliver Lafont, Mar 30 2010]

Euler transform of length 2 sequence [ -1, 1]. - Michael Somos, Mar 21 2011

Moebius transform is length 2 sequence [ -1, 2]. - Michael Somos, Mar 21 2011

a(n) = -b(n) where b(n) = multiplicative with b(2^e) = -1 if e>1, b(p^e) = 1 if p>2. - Michael Somos, Mar 21 2011

a(n) = a(-n) = a(n + 2) = cos(n * Pi). a(n) = c_2(n) if n>1 where c_k(n) is Ramanujan's sum. - Michael Somos, Mar 21 2011

a(n) = (1/2)*Product_{k=0..2*n-1} 2*cos((2*k+1)*Pi/(4*n)), n >= 1. See the product given in the Oct 21 2013 formula comment in A056594, and replace there n -> 2*n. - Wolfdieter Lang, Oct 23 2013

D.g.f.: (2^(1-s)-1)*zeta(s) = -eta(s) (the Dirichlet eta function). - Ralf Stephan, Mar 27 2015

From Ilya Gutkovskiy, Aug 17 2016: (Start)

a(n) = T_n(-1), where T_n(x) are the Chebyshev polynomials of the first kind.

Binomial transform of A122803. (End)

a(n) = exp(i*Pi*n) = exp(-i*Pi*n) - Carauleanu Marc, Sep 15 2016

a(n) = Sum_{k=0..n} (-1)^k*A063007(n, k), n >= 0. - Wolfdieter Lang, Sep 13 2016

EXAMPLE

G.f. = 1 - x + x^2 - x^3 + x^4 - x^5 + x^6 - x^7 + x^8 - x^9 + x^10 - x^11 + x^12 + ...

MAPLE

A033999 := n->(-1)^n: seq(A033999(n), n=0..100);

MATHEMATICA

Table[(-1)^n, {n, 0, 88}] (* Alonso del Arte, Nov 30 2009 *)

PadRight[{}, 89, {1, -1}] (* Arkadiusz Wesolowski, Sep 16 2012 *)

PROG

(PARI) a(n)=1-2*(n%2) /* Jaume Oliver Lafont, Mar 20 2009 */

(Haskell)

a033999 = (1 -) . (* 2) . (`mod` 2)

a033999_list = cycle [1, -1] -- Reinhard Zumkeller, May 06 2012, Jan 02 2012

(MAGMA) [(-1)^n : n in [0..100]]; // Wesley Ivan Hurt, Nov 19 2014

CROSSREFS

Cf. A056594, A059841, A063007, A122803.

Sequence in context: A143622 A076479 A155040 * A000012 A162511 A157895

Adjacent sequences:  A033996 A033997 A033998 * A034000 A034001 A034002

KEYWORD

sign,easy

AUTHOR

Vasiliy Danilov (danilovv(AT)usa.net), Jun 15 1998

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 2 13:25 EST 2016. Contains 278678 sequences.