The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A143583 Apery-like numbers: a(n) = (1/C(2n,n))*Sum_{k=0..n} C(2k,k)*C(4k,2k)*C(2n-2k,n-k)*C(4n-4k,2n-2k). 34
 1, 12, 164, 2352, 34596, 516912, 7806224, 118803648, 1818757924, 27972399792, 431824158864, 6686855325888, 103814819552016, 1615296581684928, 25180747436810304, 393189646497706752, 6148451986328464164, 96269310864931432368, 1509065592479205772304 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS These numbers bear some analogy to the Apery numbers A005258. They appear in the evaluation of the spectral zeta function of the non-commutative harmonic oscillator zeta_Q(s) at s = 2 and satisfy a recurrence relation similar to the one satisfied by the Apery numbers. LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 K. Kimoto and M. Wakayama, Apéry-like numbers arising from special values of spectral zeta functions for non-commutative harmonic oscillators, arXiv:math/0603700 [math.NT], 2006; Kyushu J. Math. Vol. 60, 2006, 383-404. Ji-Cai Liu, He-Xia Ni, Supercongruences for Almkvist--Zudilin sequences, arXiv:2004.07652 [math.NT], 2020. See Gn. Stéphane Ouvry, Alexios Polychronakos, Lattice walk area combinatorics, some remarkable trigonometric sums and Apéry-like numbers, arXiv:2006.06445 [math-ph], 2020. Zhi-Hong Sun, New congruences involving Apéry-like numbers, arXiv:2004.07172 [math.NT], 2020. See Gn. Zhi-Hong Sun, Congruences for two types of Apery-like sequences, arXiv:2005.02081 [math.NT], 2020. FORMULA a(n) = (1/C(2n,n))*sum {k = 0..n} C(2k,k)*C(4k,2k)*C(2n-2k,n-k)*C(4n-4k,2n-2k). Recurrence relation: a(0) = 1, a(1) = 12, n^2*a(n) = 4*(8*n^2-8*n+3)*a(n-1) - 256*(n-1)^2*a(n-2). Congruences: For odd prime p, a(m*p^r) = a(m*p^(r-1)) (mod p^r) for any m,r in N. a(n) ~ 16^n/(Pi*sqrt(Pi*n)) * (log(n) + gamma + 6*log(2)), where gamma is the Euler-Mascheroni constant (A001620). - Vaclav Kotesovec, Oct 11 2013 a(n) = sum {k = 0..n} 4^(n-k) C(2k,k)^2*C(2n-2k,n-k). - Tito Piezas III, Dec 12 2014 a(n) = hypergeom([1/2,1/2,n+1],[1,n+3/2],1)*2^(5*n+1)*n!/((2*n+1)!!*Pi) - G. A. Edgar, Dec 10 2016 a(n) = binomial(4*n,2*n)*hypergeom([1/4,3/4,-n,-n], [1,1/4-n,3/4-n], 1). - Peter Luschny, May 14 2020 EXAMPLE G.f. = 1 + 12*x + 164*x^2 + 2352*x^3 + 34596*x^4 + 516912*x^5 + ... MAPLE a := n -> 1/binomial(2*n, n)*add(binomial(2*k, k)*binomial(4*k, 2*k)*binomial(2*n-2*k, n-k)*binomial(4*n-4*k, 2*n-2*k), k = 0..n): seq(a(n), n = 0..25); series( 2*EllipticK(4*x^(1/2))/(Pi*sqrt(1-16*x)), x=0, 20); # Mark van Hoeij, Apr 06 2013 A143583 := n -> binomial(4*n, 2*n)*hypergeom([1/4, 3/4, -n, -n], [1, 1/4-n, 3/4-n], 1): seq(simplify(A143583(n)), n = 0..18); # Peter Luschny, May 14 2020 MATHEMATICA Table[1/Binomial[2*n, n]*Sum[Binomial[2*k, k]*Binomial[4*k, 2*k]*Binomial[2*n-2*k, n-k]*Binomial[4*n-4*k, 2*n-2*k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 11 2013 *) CROSSREFS Cf. A005258. The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692, A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.) Sequence in context: A024221 A093152 A282010 * A231541 A203372 A193104 Adjacent sequences:  A143580 A143581 A143582 * A143584 A143585 A143586 KEYWORD easy,nonn AUTHOR Peter Bala, Aug 25 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 21 01:14 EDT 2020. Contains 337910 sequences. (Running on oeis4.)