login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A219692 a(n) = Sum_{j=0..floor(n/3)} (-1)^j C(n,j) * C(2j,j) * C(2n-2j,n-j) * (C(2n-3j-1,n) + C(2n-3j,n)). 34
2, 6, 54, 564, 6390, 76356, 948276, 12132504, 158984694, 2124923460, 28877309604, 398046897144, 5554209125556, 78328566695736, 1114923122685720, 15999482238880464, 231253045986317814, 3363838379489630916 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

This sequence is s_18 in Cooper's paper.

This is one of the Apery-like sequences - see Cross-references. - Hugo Pfoertner, Aug 06 2017

Every prime eventually divides some term of this sequence. - Amita Malik, Aug 20 2017

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..830 (terms 0..254 from Jason Kimberley)

S. Cooper, Sporadic sequences, modular forms and new series for 1/pi, Ramanujan J. (2012).

Amita Malik and Armin Straub, Divisibility properties of sporadic Apéry-like numbers, Research in Number Theory, 2016, 2:5

FORMULA

1/Pi

= 2*3^(-5/2) Sum {k>=0} (n a(n)/18^n) [Cooper, equation (42)]

= 2*3^(-5/2) Sum {k>=0} (n a(n)/A001027(n)).

G.f.: 1+hypergeom([1/8, 3/8],[1],256*x^3/(1-12*x)^2)^2/sqrt(1-12*x). - Mark van Hoeij, May 07 2013

Conjecture: n^3*a(n) -2*(2*n-1)*(7*n^2-7*n+3)*a(n-1) +12*(4*n-5)*(n-1)* (4*n-3)*a(n-2)=0. - R. J. Mathar, Jun 14 2016

MATHEMATICA

Table[Sum[ (-1)^j *Binomial[n, j]*Binomial[2 j, j]*Binomial[2 n - 2 j, n - j]*(Binomial[2 n - 3 j - 1, n] + Binomial[2 n - 3 j, n]), {j, 0, Floor[n/3]}], {n, 0, 50}] (* G. C. Greubel, Oct 24 2017 *)

PROG

(MAGMA) s_18 := func<k|&+[(-1)^j*C(k, j)*C(2*j, j)*C(2*k-2*j, k-j)*(C(2*k-3*j-1, k)+C(2*k-3*j, k)):j in[0..k div 3]]> where C is Binomial;

CROSSREFS

The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692,A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)

Sequence in context: A259553 A262046 A280982 * A085078 A152543 A279454

Adjacent sequences:  A219689 A219690 A219691 * A219693 A219694 A219695

KEYWORD

nonn,easy

AUTHOR

Jason Kimberley, Nov 25 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 22 02:46 EDT 2018. Contains 316431 sequences. (Running on oeis4.)