This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A143003 a(0) = 0, a(1) = 1, a(n+1) = (2*n+1)*(n^2+n+5)*a(n) - n^6*a(n-1). 43
 0, 1, 21, 1091, 114520, 21298264, 6410456640, 2923097201856, 1920450126458880, 1747596822651334656, 2133806329230225408000, 3405545462439659704320000, 6950705677729940374290432000, 17807686090745585163974737920000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS This is the case m = 1 of the general recurrence a(0) = 0, a(1) = 1, a(n+1) = (2*n+1)*(n^2+n+2*m^2+2*m+1 )*a(n) - n^6*a(n-1) (we suppress the dependence of a(n) on m), which arises when accelerating the convergence of the series sum {k = 1..inf} 1/k^3 for Apery's constant zeta(3). For other cases see A066989 (m=0), A143004 (m=2), A143005 (m=3) and A143006 (m=4). The solution to the general recurrence may be expressed as a sum: a(n) = n!^3*p_m(n)*sum {k = 1..n} 1/(k^3*p_m(k-1)*p_m(k)), where p_m(x) = sum {k = 0..n} C(2*k,k)^2*C(n+k,2*k)*C(x+k,2*k) is a polynomial in x of degree 2*m. The first few are p_0(x) = 1, p_1(x) = 2*x^2 + 2*x + 1, p_2(x) = (3*x^4 + 6*x^3 + 9*x^2 + 6*x + 2)/2 and p_3(x) = (10*x^6 + 30*x^5 + 85*x^4 + 120*x^3 + 121*x^2 + 66*x + 18)/18. For fixed n, the sequence [p_n(k)]k>=0 is the crystal ball sequence for the product lattice A_n x A_n. See A143007 for the table of values [p_n(k)] n,k >= 0. Observe that [p_n(n)] n >= 0 is the sequence of Apery numbers A005259. The reciprocity law p_m(n) = p_n(m) holds for nonnegative integers m and n. In particular we have p_m(1) = 2*m^2+2*m+1 and p_m(2) = (3*m^4+6*m^3+9*m^2+6*m+2)/2. The polynomial p_m(x) is the unique polynomial solution of the difference equation (x+1)^3*f(x+1) + x^3*f(x-1) = (2*x+1)*(x^2+x+2*m^2+2*m+1)*f(x), normalized so that f(0) = 1. The reciprocity law now yields the Apery-like recursion m^3*p_m(x) + (m-1)^3*p_(m-2)(x) = (2*m-1)*(m^2-m+1+2*x^2+2*x)*p_(m-1)(x). The polynomial functions p_m(x) have their zeros on the vertical line Re x = -1/2 in the complex plane; that is, the polynomials p_m(x-1), m = 1,2,3,..., satisfy a Riemann hypothesis (adapt the proof of the lemma on p.4 of [BUMP et al.]). The general recurrence in the first paragraph above has a second solution b(n) = n!^3*p_m(n) with initial conditions b(0) = 1, b(1) = 2*m^2+2*m+1. Hence the behavior of a(n) for large n is given by lim n -> infinity a(n)/b(n) = sum {k = 1..inf} 1/(k^3*p_m(k-1)*p_m(k)) = 1/((2*m^2+2*m+1)- 1^6/(3*(2*m^2+2*m+3)- 2^6/(5*(2*m^2+2*m+7)- 3^6/(7*(2*m^2+2*m+13)-...)))) = sum {k = 1..inf} 1/(m+k)^3. The final equality follows from a result of Ramanujan; see [Berndt, Chapter 12, Entry 32(iii)]. For the corresponding results for the constant zeta(2) see A142995. For corresponding results for the constant log(2) see A142979 and A142992. REFERENCES Bruce C. Berndt, Ramanujan's Notebooks Part II, Springer-Verlag. LINKS Seiichi Manyama, Table of n, a(n) for n = 0..181 D. Bump, K. Choi, P. Kurlberg and J. Vaaler, A local Riemann hypothesis, I, Math. Zeit. 233, (2000), 1-19. FORMULA a(n) = n!^3*p(n)*sum {k = 1..n} 1/(k^3*p(k-1)*p(k)), where p(n) = 2*n^2+2*n+1 = A001844(n). Recurrence: a(0) = 0, a(1) = 1, a(n+1) = (2*n+1)*(n^2+n+5)*a(n) - n^6*a(n-1). The sequence b(n):= n!^3*p(n) satisfies the same recurrence with the initial conditions b(0) = 1, b(1) = 5. Hence we obtain the finite continued fraction expansion a(n)/b(n) = 1/(5- 1^6/(21- 2^6/(55- 3^6/(119-...- (n-1)^6/((2*n-1)*(n^2-n+5)))))), for n >=2. The behavior of a(n) for large n is given by lim n -> infinity a(n)/b(n) = sum {k = 1..inf} 1/(k^3*(4*k^4+1)) = 1/(5- 1^6/(21- 2^6/(55- 3^6/(119-...- n^6/((2*n+1)*(n^2+n+5)-...))))) = zeta(3) - 1, where the final equality follows from a result of Ramanujan; see [Berndt, Chapter 12, Entry 32(iii) at x = 1]. MAPLE p := n -> 2*n^2+2*n+1: a := n -> n!^3*p(n)*sum (1/(k^3*p(k-1)*p(k)), k = 1..n): seq(a(n), n = 0..14) MATHEMATICA RecurrenceTable[{a==0, a==1, a[n+1]==(2n+1)(n^2+n+5)a[n]- n^6 a[n-1]}, a[n], {n, 15}] (* Harvey P. Dale, Jun 20 2011 *) CROSSREFS Cf. A066989, A008288, A108625, A142979, A142992, A142995, A143004, A143005, A143006, A143007. The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692,A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.) Sequence in context: A012153 A231521 A220637 * A193156 A012183 A012230 Adjacent sequences:  A143000 A143001 A143002 * A143004 A143005 A143006 KEYWORD easy,nonn AUTHOR Peter Bala, Jul 19 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 21 08:47 EDT 2019. Contains 328292 sequences. (Running on oeis4.)