login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A290576 Apéry-like numbers Sum_{k=0..n} Sum_{l=0..n} (C(n,k)^2*C(n,l)*C(k,l)*C(k+l,n)). 46
1, 3, 27, 309, 4059, 57753, 866349, 13492251, 216077787, 3536145057, 58875891777, 994150929951, 16984143140589, 293036113226223, 5098773125244483, 89368239352074309, 1576424378494272987, 27964450505226314673, 498550055166916502121 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Sequence zeta (formula 4.12) in Almkvist, Straten, Zudilin article.

LINKS

Robert Israel, Table of n, a(n) for n = 0..779

G. Almkvist, D. van Straten, W. Zudilin, Generalizations of Clausen’s formula and algebraic transformations of Calabi-Yau differential equations, Proc. Edinburgh Math. Soc.54 (2) (2011), 273-295.

Amita Malik and Armin Straub, Divisibility properties of sporadic Apéry-like numbers, Research in Number Theory, 2016, 2:5

FORMULA

a(0) = 1, a(1) = 3,

a(n+1) = ( (2*n+1)*(9*n^2+9*n+3)*a(n) + 27*n^3*a(n-1) ) / (n+1)^3.

MAPLE

f:= gfun:-rectoproc({a(0)=1, a(1)=3, a(n+1) = ( (2*n+1)*(9*n^2+9*n+3)*a(n) + 27*n^3*a(n-1) ) / (n+1)^3}, a(n), remember):

map(f, [$0..30]); # Robert Israel, Aug 07 2017

MATHEMATICA

Table[Sum[Sum[(Binomial[n, k]^2*Binomial[n, j] Binomial[k, j] Binomial[k + j, n]), {j, 0, n} ], {k, 0, n}], {n, 0, 18}] (* Michael De Vlieger, Aug 07 2017 *)

PROG

(PARI) C=binomial;

a(n) = sum(k=0, n, sum(l=0, n, C(n, k)^2 * C(n, l) * C(k, l) * C(k+l, n) ));

CROSSREFS

The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692, A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)

Other Apéry-like sequences are A000172, A002893, A002895, A005258, A005259, A005260, A006077, A081085, A093388, A125143, A183204, A219692, A229111, A290575.

For primes that do not divide the terms of the sequences A000172, A005258, A002893, A081085, A006077, A093388, A125143, A229111, A002895, A290575, A290576, A005259 see A260793, A291275-A291284 and A133370 respectively.

Sequence in context: A204821 A200903 A318108 * A291315 A078532 A264684

Adjacent sequences:  A290573 A290574 A290575 * A290577 A290578 A290579

KEYWORD

nonn,easy

AUTHOR

Hugo Pfoertner, Aug 06 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 17 01:24 EDT 2018. Contains 316275 sequences. (Running on oeis4.)