login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002893 a(n) = Sum_{k=0..n} binomial(n,k)^2 * binomial(2*k,k).
(Formerly M2998 N1214)
89
1, 3, 15, 93, 639, 4653, 35169, 272835, 2157759, 17319837, 140668065, 1153462995, 9533639025, 79326566595, 663835030335, 5582724468093, 47152425626559, 399769750195965, 3400775573443089, 29016970072920387, 248256043372999089 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
This is the Taylor expansion of a special point on a curve described by Beauville. - Matthijs Coster, Apr 28 2004
a(n) is the 2n-th moment of the distance from the origin of a 3-step random walk in the plane. - Peter M. W. Gill (peter.gill(AT)nott.ac.uk), Feb 27 2004
a(n) is the number of Abelian squares of length 2n over a 3-letter alphabet. - Jeffrey Shallit, Aug 17 2010
Consider 2D simple random walk on honeycomb lattice. a(n) gives number of paths of length 2n ending at origin. - Sergey Perepechko, Feb 16 2011
Row sums of A318397 the square of A008459. - Peter Bala, Mar 05 2013
Conjecture: For each n=1,2,3,... the polynomial g_n(x) = Sum_{k=0..n} binomial(n,k)^2*binomial(2k,k)*x^k is irreducible over the field of rational numbers. - Zhi-Wei Sun, Mar 21 2013
This is one of the Apery-like sequences - see Cross-references. - Hugo Pfoertner, Aug 06 2017
a(n) is the sum of the squares of the coefficients of (x + y + z)^n. - Michael Somos, Aug 25 2018
a(n) is the constant term in the expansion of (1 + (1 + x) * (1 + y) + (1 + 1/x) * (1 + 1/y))^n. - Seiichi Manyama, Oct 28 2019
REFERENCES
Matthijs Coster, Over 6 families van krommen [On 6 families of curves], Master's Thesis (unpublished), Aug 26 1983.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..1051 (terms 0..100 from T. D. Noe)
B. Adamczewski, J. P. Bell, and E. Delaygue, Algebraic independence of G-functions and congruences à la Lucas", arXiv preprint arXiv:1603.04187 [math.NT], 2016.
David H. Bailey, Jonathan M. Borwein, David Broadhurst and M. L. Glasser, Elliptic integral evaluations of Bessel moments, arXiv:0801.0891 [hep-th], 2008.
P. Barrucand, A combinatorial identity, Problem 75-4, SIAM Rev., 17 (1975), 168. Solution by D. R. Breach, D. McCarthy, D. Monk and P. E. O'Neil, SIAM Rev. 18 (1976), 303.
P. Barrucand, Problem 75-4, A Combinatorial Identity, SIAM Rev., 17 (1975), 168. [Annotated scanned copy of statement of problem]
Arnaud Beauville, Les familles stables de courbes sur P_1 admettant quatre fibres singulières, Comptes Rendus, Académie Sciences Paris, no. 294, May 24 1982.
Artur Bille, Victor Buchstaber, Simon Coste, Satoshi Kuriki, and Evgeny Spodarev, Random eigenvalues of graphenes and the triangulation of plane, arXiv:2306.01462 [math.SP], 2023.
Jonathan M. Borwein, A short walk can be beautiful, 2015.
Jonathan M. Borwein, Dirk Nuyens, Armin Straub and James Wan, Random Walk Integrals, 2010.
Jonathan M. Borwein and Armin Straub, Mahler measures, short walks and log-sine integrals.
Jonathan M. Borwein, Armin Straub and Christophe Vignat, Densities of short uniform random walks, Part II: Higher dimensions, Preprint, 2015
Jonathan M. Borwein, Armin Straub and James Wan, Three-Step and Four-Step Random Walk Integrals, Exper. Math., 22 (2013), 1-14.
Charles Burnette and Chung Wong, Abelian Squares and Their Progenies, arXiv:1609.05580 [math.CO], 2016.
Shaun Cooper, Apéry-like sequences defined by four-term recurrence relations, arXiv:2302.00757 [math.NT], 2023.
M. Coster, Email, Nov 1990
Eric Delaygue, Arithmetic properties of Apery-like numbers, arXiv preprint arXiv:1310.4131 [math.NT], 2013.
C. Domb, On the theory of cooperative phenomena in crystals, Advances in Phys., 9 (1960), 149-361.
Jeffrey S. Geronimo, Hugo J. Woerdeman, and Chung Y. Wong, The autoregressive filter problem for multivariable degree one symmetric polynomials, arXiv:2101.00525 [math.CA], 2021.
Ofir Gorodetsky, New representations for all sporadic Apéry-like sequences, with applications to congruences, arXiv:2102.11839 [math.NT], 2021. See C p. 2.
Victor J. W. Guo, Proof of two conjectures of Z.-W. Sun on congruences for Franel numbers, arXiv preprint arXiv:1201.0617 [math.NT], 2012.
Victor J. W. Guo, Guo-Shuai Mao and Hao Pan, Proof of a conjecture involving Sun polynomials, arXiv preprint arXiv:1511.04005 [math.NT], 2015.
E. Hallouin and M. Perret, A Graph Aided Strategy to Produce Good Recursive Towers over Finite Fields, arXiv preprint arXiv:1503.06591 [math.NT], 2015.
J. A. Hendrickson, Jr., On the enumeration of rectangular (0,1)-matrices, Journal of Statistical Computation and Simulation, 51 (1995), 291-313.
S. Herfurtner, Elliptic surfaces with four singular fibres, Mathematische Annalen, 1991. Preprint.
Pakawut Jiradilok and Elchanan Mossel, Gaussian Broadcast on Grids, arXiv:2402.11990 [cs.IT], 2024. See p. 27.
Tanya Khovanova and Konstantin Knop, Coins of three different weights, arXiv:1409.0250 [math.HO], 2014.
Murray S. Klamkin, ed., Problems in Applied Mathematics: Selections from SIAM Review, SIAM, 1990; see pp. 148-149.
Bradley Klee, Checking Weierstrass data, 2023.
Amita Malik and Armin Straub, Divisibility properties of sporadic Apéry-like numbers, Research in Number Theory, 2016, 2:5
Mathematics Stack Exchange, sum involving the product of binomial coefficients, Nov 10 2016.
L. B. Richmond and Jeffrey Shallit, Counting abelian squares, Electronic J. Combinatorics 16 (1), #R72, June 2009. [From Jeffrey Shallit, Aug 17 2010]
Armin Straub, Arithmetic aspects of random walks and methods in definite integration, Ph. D. Dissertation, School Of Science And Engineering, Tulane University, 2012. - From N. J. A. Sloane, Dec 16 2012
Zhi-Hong Sun, Congruences for Apéry-like numbers, arXiv:1803.10051 [math.NT], 2018.
Zhi-Hong Sun, New congruences involving Apéry-like numbers, arXiv:2004.07172 [math.NT], 2020.
Zhi-Wei Sun, Connections between p = x^2+3y^2 and Franel numbers, J. Number Theory 133(2013), 2919-2928.
Zhi-Wei Sun, Congruences involving g_n(x)=sum_{k=0..n}binom(n,k)^2*binom(2k,k)*x^k, Ramanujan J., in press. Doi: 10.1007/s11139-015-9727-3.
Brani Vidakovic, All roads lead to Rome--even in the honeycomb world, Amer. Statist., 48 (1994) no. 3, 234-236.
Yi Wang and Bao-Xuan Zhu, Proofs of some conjectures on monotonicity of number-theoretic and combinatorial sequences, arXiv preprint arXiv:1303.5595 [math.CO], 2013.
D. Zagier, Integral solutions of Apery-like recurrence equations. See line C in sporadic solutions table of page 5.
FORMULA
a(n) = Sum_{m=0..n} binomial(n, m) * A000172(m). [Barrucand]
D-finite with recurrence: (n+1)^2 a(n+1) = (10*n^2+10*n+3) * a(n) - 9*n^2 * a(n-1). - Matthijs Coster, Apr 28 2004
Sum_{n>=0} a(n)*x^n/n!^2 = BesselI(0, 2*sqrt(x))^3. - Vladeta Jovovic, Mar 11 2003
a(n) = Sum_{p+q+r=n} (n!/(p!*q!*r!))^2 with p, q, r >= 0. - Michael Somos, Jul 25 2007
a(n) = 3*A087457(n) for n>0. - Philippe Deléham, Sep 14 2008
a(n) = hypergeom([1/2, -n, -n], [1, 1], 4). - Mark van Hoeij, Jun 02 2010
G.f.: 2*sqrt(2)/Pi/sqrt(1-6*z-3*z^2+sqrt((1-z)^3*(1-9*z))) * EllipticK(8*z^(3/2)/(1-6*z-3*z^2+sqrt((1-z)^3*(1-9*z)))). - Sergey Perepechko, Feb 16 2011
G.f.: Sum_{n>=0} (3*n)!/n!^3 * x^(2*n)*(1-x)^n / (1-3*x)^(3*n+1). - Paul D. Hanna, Feb 26 2012
Asymptotic: a(n) ~ 3^(2*n+3/2)/(4*Pi*n). - Vaclav Kotesovec, Sep 11 2012
G.f.: 1/(1-3*x)*(1-6*x^2*(1-x)/(Q(0)+6*x^2*(1-x))), where Q(k) = (54*x^3 - 54*x^2 + 9*x -1)*k^2 + (81*x^3 - 81*x^2 + 18*x -2)*k + 33*x^3 - 33*x^2 +9*x - 1 - 3*x^2*(1-x)*(1-3*x)^3*(k+1)^2*(3*k+4)*(3*k+5)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Jul 16 2013
G.f.: G(0)/(2*(1-9*x)^(2/3)), where G(k) = 1 + 1/(1 - 3*(3*k+1)^2*x*(1-x)^2/(3*(3*k+1)^2*x*(1-x)^2 - (k+1)^2*(1-9*x)^2/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 31 2013
a(n) = [x^(2n)] 1/agm(sqrt((1-3*x)*(1+x)^3), sqrt((1+3*x)*(1-x)^3)). - Gheorghe Coserea, Aug 17 2016
0 = +a(n)*(+a(n+1)*(+729*a(n+2) -1539*a(n+3) +243*a(n+4)) +a(n+2)*(-567*a(n+2) +1665*a(n+3) -297*a(n+4)) +a(n+3)*(-117*a(n+3) +27*a(n+4))) +a(n+1)*(+a(n+1)*(-324*a(n+2) +720*a(n+3) -117*a(n+4)) +a(n+2)*(+315*a(n+2) -1000*a(n+3) +185*a(n+4)) +a(n+3)*(+80*a(n+3) -19*a(n+4))) +a(n+2)*(+a(n+2)*(-9*a(n+2) +35*a(n+3) -7*a(n+4)) +a(n+3)*(-4*a(n+3) +a(n+4))) for all n in Z. - Michael Somos, Oct 30 2017
G.f. y=A(x) satisfies: 0 = x*(x - 1)*(9*x - 1)*y'' + (27*x^2 - 20*x + 1)*y' + 3*(3*x - 1)*y. - Gheorghe Coserea, Jul 01 2018
Sum_{k>=0} binomial(2*k,k) * a(k) / 6^(2*k) = A086231 = (sqrt(3)-1) * (Gamma(1/24) * Gamma(11/24))^2 / (32*Pi^3). - Vaclav Kotesovec, Apr 23 2023
From Bradley Klee, Jun 05 2023: (Start)
The g.f. T(x) obeys a period-annihilating ODE:
0=3*(-1 + 3*x)*T(x) + (1 - 20*x + 27*x^2)*T'(x) + x*(-1 + x)*(-1 + 9*x)*T''(x).
The periods ODE can be derived from the following Weierstrass data:
g2 = (3/64)*(1 + 3*x)*(1 - 15*x + 75*x^2 + 3*x^3);
g3 = -(1/512)*(-1 + 6*x + 3*x^2)*(1 - 12*x + 30*x^2 - 540*x^3 + 9*x^4);
which determine an elliptic surface with four singular fibers. (End)
EXAMPLE
G.f.: A(x) = 1 + 3*x + 15*x^2 + 93*x^3 + 639*x^4 + 4653*x^5 + 35169*x^6 + ...
G.f.: A(x) = 1/(1-3*x) + 6*x^2*(1-x)/(1-3*x)^4 + 90*x^4*(1-x)^2/(1-3*x)^7 + 1680*x^6*(1-x)^3/(1-3*x)^10 + 34650*x^8*(1-x)^4/(1-3*x)^13 + ... - Paul D. Hanna, Feb 26 2012
MAPLE
series(1/GaussAGM(sqrt((1-3*x)*(1+x)^3), sqrt((1+3*x)*(1-x)^3)), x=0, 42) # Gheorghe Coserea, Aug 17 2016
A002893 := n -> hypergeom([1/2, -n, -n], [1, 1], 4):
seq(simplify(A002893(n)), n=0..20); # Peter Luschny, May 23 2017
MATHEMATICA
Table[Sum[Binomial[n, k]^2 Binomial[2k, k], {k, 0, n}], {n, 0, 20}] (* Harvey P. Dale, Aug 19 2011 *)
a[ n_] := If[ n < 0, 0, HypergeometricPFQ[ {1/2, -n, -n}, {1, 1}, 4]]; (* Michael Somos, Oct 16 2013 *)
a[n_] := SeriesCoefficient[BesselI[0, 2*Sqrt[x]]^3, {x, 0, n}]*n!^2; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Dec 30 2013 *)
a[ n_] := If[ n < 0, 0, Block[ {x, y, z}, Expand[(x + y + z)^n] /. {t_Integer -> t^2, x -> 1, y -> 1, z -> 1}]]; (* Michael Somos, Aug 25 2018 *)
PROG
(PARI) {a(n) = if( n<0, 0, n!^2 * polcoeff( besseli(0, 2*x + O(x^(2*n+1)))^3, 2*n))};
(PARI) {a(n) = sum(k=0, n, binomial(n, k)^2 * binomial(2*k, k))}; /* Michael Somos, Jul 25 2007 */
(PARI) {a(n)=polcoeff(sum(m=0, n, (3*m)!/m!^3 * x^(2*m)*(1-x)^m / (1-3*x+x*O(x^n))^(3*m+1)), n)} \\ Paul D. Hanna, Feb 26 2012
(PARI) N = 42; x='x + O('x^N); v = Vec(1/agm(sqrt((1-3*x)*(1+x)^3), sqrt((1+3*x)*(1-x)^3))); vector((#v+1)\2, k, v[2*k-1]) \\ Gheorghe Coserea, Aug 17 2016
(Magma) [&+[Binomial(n, k)^2 * Binomial(2*k, k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Aug 26 2018
(SageMath)
def A002893(n): return simplify(hypergeometric([1/2, -n, -n], [1, 1], 4))
[A002893(n) for n in range(31)] # G. C. Greubel, Jan 21 2023
CROSSREFS
Cf. A169714 and A169715. - Peter Bala, Mar 05 2013
The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692,A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)
For primes that do not divide the terms of the sequences A000172, A005258, A002893, A081085, A006077, A093388, A125143, A229111, A002895, A290575, A290576, A005259 see A260793, A291275-A291284 and A133370 respectively.
Sequence in context: A193661 A192296 A370218 * A256335 A258313 A368966
KEYWORD
nonn,easy,walk,nice
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 19 07:40 EDT 2024. Contains 370958 sequences. (Running on oeis4.)