login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A006480 De Bruijn's S(3,n): (3n)!/(n!)^3.
(Formerly M4284)
97
1, 6, 90, 1680, 34650, 756756, 17153136, 399072960, 9465511770, 227873431500, 5550996791340, 136526995463040, 3384731762521200, 84478098072866400, 2120572665910728000, 53494979785374631680, 1355345464406015082330, 34469858696831179429500, 879619727485803060256500, 22514366432046593564460000 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Number of paths of length 3n in an n X n X n grid from (0,0,0) to (n,n,n), using steps (0,0,1), (0,1,0), and (1,0,0).
Appears in Ramanujan's theory of elliptic functions of signature 3.
S(s,n) = Sum_{k=0..2n} (-1)^(k+n) * binomial(2n, k)^s. The formula S(3,n) = (3n)!/(n!)^3 is due to Dixon (according to W. N. Bailey 1935). - Charles R Greathouse IV, Dec 28 2011
a(n) is the number of ballot results that end in a 3-way tie when 3n voters each cast two votes for two out of three candidates vying for 2 slots on a county board; in such a tie, each of the three candidates receives 2n votes. Note there are C(3n,2n) ways to choose the voters who cast a vote for the youngest candidate. The n voters who did note vote for the youngest candidate voted for the two older candidates. Then there are C(2n,n) ways to choose the other n voters who voted for both the youngest and the second youngest candidate. The remaining voters vote for the oldest candidate. Hence there are C(3n,2n)*C(2n,n)=(3n)!/(n!)^3 ballot results. - Dennis P. Walsh, May 02 2013
a(n) is the constant term of (X+Y+1/(X*Y))^(3*n). - Mark van Hoeij, May 07 2013
For n > 2 a(n) is divisible by (n+2)*(n+1)^2, a(n) = (n+1)^2*(n+2)*A161581(n). - Alexander Adamchuk, Dec 27 2013
a(n) is the number of permutations of the multiset {1^n, 2^n, 3^n}, the number of ternary words of length 3*n with n of each letters. - Joerg Arndt, Feb 28 2016
Diagonal of the rational function 1/(1 - x - y - z). - Gheorghe Coserea, Jul 06 2016
At least two families of elliptic curves, x = 2*H1 = (p^2+q^2)*(1-q) and x = 2*H2 = p^2+q^2-3*p^2*q+q^3 (0<x<4/27), generate this sequence via the period-energy function T(x) = 2*Pi*2F1(1/3,2/3; 1; (27/4)*x). - Bradley Klee, Feb 25 2018
The ordinary generating function also determines periods along a family of tetrahedral-symmetric sphere curves ("du troisième ordre"). Compare links to Goursat "Étude des surfaces..." and "Proof Certificate". - Bradley Klee, Sep 28 2018
REFERENCES
L. A. Aizenberg and A. P. Yuzhakov, "Integral representations and residues in multidimensional complex analysis", American Mathematical Society, 1983, p. 194.
Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 174.
N. G. de Bruijn, Asymptotic Methods in Analysis, North-Holland Publishing Co., 1958. See chapters 4 and 6.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
George E. Andrews, The well-poised thread: An Organized Chronicle of Some Amazing Summations and their Implications, Ramanujan J., 1 (1997), 7-23; see Section 8.
A. Bostan, S. Boukraa, J.-M. Maillard and J.-A. Weil, Diagonals of rational functions and selected differential Galois groups, Journal of Physics A: Mathematical and Theoretical, Vol. 48, No. 50 (2015), 504001; arXiv preprint, arXiv:1507.03227 [math-ph], 2015.
Alin Bostan, Armin Straub, and Sergey Yurkevich, On the representability of sequences as constant terms, arXiv:2212.10116 [math.NT], 2022.
Henry W. Gould, Tables of Combinatorial Identities, Edited by J. Quaintance.
Édouard Goursat, Étude des surfaces qui admettent tous les plans de symétrie d'un polyèdre régulier, Annales scientifiques de l'École Normale Supérieure, Série 3 : Volume 4 (1887), 165-166.
Brad Klee, Geometric G.F. for Ramanujan Periods, seqfans mailing list, 2017.
Bradley Klee, Proof Certificate.
Gilbert Labelle and Annie Lacasse, Closed paths whose steps are roots of unity, in FPSAC 2011, Reykjavík, Iceland DMTCS proc. AO, 2011, pp. 599-610.
Pedro J. Miana, Hideyuki Ohtsuka, and Natalia Romero, Sums of powers of Catalan triangle numbers, Discrete Mathematics, Vol. 340, No. 10 (2017), pp. 2388-2397; arXiv preprint, arXiv:1602.04347 [math.NT], 2016.
Jovan Mikić, A Method For Examining Divisibility Properties Of Some Binomial Sums, J. Int. Seq., Vol. 21 (2018), Article 18.8.7.
Michaël Moortgat, The Tamari order for D^3 and derivability in semi-associative Lambek-Grishin Calculus, 15th Workshop: Computational Logic and Applications (CLA 2020).
Karol A. Penson and Allan I. Solomon, Coherent states from combinatorial sequences, in: E. Kapuscik and A. Horzela (eds.), Quantum theory and symmetries, World Scientific, 2002, pp. 527-530; arXiv preprint, arXiv:quant-ph/0111151, 2001.
Marko Petkovsek, Herbert Wilf and Doron Zeilberger, A=B, A K Peters, 1996, p. 22.
Srinivasa Ramanujan, Modular Equations and Approximations to Pi, Quarterly Journal of Mathematics, XLV (1914), 350-372.
Bruno Salvy, GFUN and the AGM.
Eric Weisstein's World of Mathematics, Binomial Sums.
Wikipedia, Dixon's identity.
FORMULA
Using Stirling's formula in A000142 it is easy to get the asymptotic expression a(n) ~ 1/2 * sqrt(3) * 27^n / (Pi*n) - Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Apr 07 2001
From Karol A. Penson, Nov 21 2001: (Start)
O.g.f.: hypergeom([1/3, 2/3], [1], 27*x).
E.g.f.: hypergeom([1/3, 2/3], [1, 1], 27*x).
Integral representation as n-th moment of a positive function on [0, 27]:
a(n) = int( x^n*(-1/24*(3*sqrt(3)*hypergeom([2/3, 2/3], [4/3], 1/27*x)* Gamma(2/3)^6*x^(1/3) - 8*hypergeom([1/3, 1/3], [2/3], 1/27*x)*Pi^3)/Pi^3 /x^(2/3)/Gamma(2/3)^3), x=0..27). This representation is unique. (End)
a(n) = Sum_{k=-n..n} (-1)^k*binomial(2*n, n+k)^3. - Benoit Cloitre, Mar 02 2005
a(n) = C(2n,n)*C(3n,n) = A104684(2n,n). - Paul Barry, Mar 14 2006
G.f. satisfies: A(x^3) = A( x*(1+3*x+9*x^2)/(1+6*x)^3 )/(1+6*x). - Paul D. Hanna, Oct 29 2010
D-finite with recurrence: n^2*a(n) - 3*(3*n-1)*(3*n-2)*a(n-1) = 0. - R. J. Mathar, Dec 04 2012
a(n) = (n+1)^2*(n+2)*A161581(n) for n>2. - Alexander Adamchuk, Dec 27 2013
0 = a(n)^2*(472392*a(n+1)^2 - 83106*a(n+1)*a(n+2) + 3600*a(n+2)^2) + a(n)*a(n+1)*(-8748*a(n+1)^2 + 1953*a(n+1)*a(n+2) - 120*a(n+2)^2) + a(n+1)^2*(+36*a(n+1)^2 - 12*a(n+1)*a(n+2) + a(n+2)^2 for all n in Z. - Michael Somos, Oct 22 2014
0 = x*(27*x-1)*y'' + (54*x-1)*y' + 6*y, where y is g.f. - Gheorghe Coserea, Jul 06 2016
From Peter Bala, Jul 15 2016: (Start)
a(n) = 3*binomial(2*n - 1,n)*binomial(3*n - 1,n) = 3*[x^n] 1/(1 - x)^n * [x^n] 1/(1 - x)^(2*n) for n >= 1.
a(n) = binomial(2*n,n)*binomial(3*n,n) = ([x^n](1 + x)^(2*n)) *([x^n](1 + x)^(3*n)) = [x^n](F(x)^(6*n)), where F(x) = 1 + x + 2*x^2 + 14*x^3 + 127*x^4 + 1364*x^5 + 16219*x^6 + ... appears to have integer coefficients. Cf. A002894.
This sequence occurs as the right-hand side of several binomial sums:
Sum_{k = 0..2*n} (-1)^(n+k)*binomial(2*n,k)^3 = a(n) (Dixon's identity).
Sum_{k = 0..n} binomial(n,k)*binomial(2*n,n - k)*binomial(3*n + k,k) = a(n) (Gould, Vol. 4, 6.86)
Sum_{k = 0..n} (-1)^(n+k)*binomial(n,k)*binomial(2*n + k,n)*binomial(3*n + k,n) = a(n).
Sum_{k = 0..n} binomial(n,k)*binomial(2*n + k,k)*binomial(3*n,n - k) = a(n).
Sum_{k = 0..n} (-1)^(k)*binomial(n,k)*binomial(3*n - k,n)*binomial(4*n - k,n) = a(n).
Sum_{k = 0..2*n} (-1)^(n+k)*binomial(2*n + k,2*n - k)*binomial(2*k,k)*binomial(4*n - k,2*n) = a(n) (see Gould, Vol.5, 9.23).
Sum_{k = 0..2*n} (-1)^k*binomial(3*n,k)*binomial(3*n - k,n)^3 = a(n) (Sprugnoli, Section 2.9, Table 10, p. 123). (End)
From Bradley Klee, Feb 28 2018: (Start)
a(n) = A005809(n)*A000984(n).
G.f.: F(x) = 1/(2*Pi) Integral_{z=0..2*Pi} 2F1(1/3,2/3; 1/2; 27*x*sin^2(z)) dz.
With G(x) = x*2F1(1/3,2/3; 2; 27*x): F(x) = d/dx G(x). (Cf. A007004) (End)
F(x)*G(1/27-x) + F(1/27-x)*G(x) = 1/(4*Pi*sqrt(3)). - Bradley Klee, Sep 29 2018
Sum_{n>=0} 1/a(n) = A091683. - Amiram Eldar, Nov 15 2020
From Peter Bala, Sep 20 2021: (Start)
a(n) = Sum_{k = n..2*n} binomial(2*n,k)^2 * binomial(k,n). Cf. A001459.
a(n*p^k) == a(n*p^(k-1)) ( mod p^(3*k) ) for any prime p >= 5 and any positive integers n and k (write a(n) as C(3*n,2*n)*C(2*n,n) and apply Mestrovic, equation 39, p. 12). (End)
a(n) = 6*A060542(n). - R. J. Mathar, Jun 21 2023
Occurs on the right-hand side of the binomial sum identities Sum_{k = -n..n} (-1)^k * (n + x - k) * binomial(2*n, n+k)^3 = (x + n)*a(n) and Sum_{k = -n..n} (-1)^k * (n + x - k)^3 * binomial(2*n, n+k)^3 = x*(x + n)*(x + 2*n)*a(n) (x arbitrary). Compare with Dixon's identity: Sum_{k = -n..n} (-1)^k * binomial(2*n, n+k)^3 = a(n). - Peter Bala, Jul 31 2023
From Peter Bala, Aug 14 2023: (Start)
a(n) = (-1)^n * [x^(2*n)] ( (1 - x)^(4*n) * Legendre_P(2*n, (1 + x)/(1 - x)) ).
Row 1 of A364509. (End)
EXAMPLE
G.f.: 1 + 6*x + 90*x^2 + 1680*x^3 + 34650*x^4 + 756756*x^5 + 17153136*x^6 + ...
MAPLE
seq((3*n)!/(n!)^3, n=0..16); # Zerinvary Lajos, Jun 28 2007
MATHEMATICA
Sum [ (-1)^(k+n) Binomial[ 2n, k ]^3, {k, 0, 2n} ]
a[ n_] := If[ n < 0, 0, (-1)^n HypergeometricPFQ[ {-2 n, -2 n, -2 n}, {1, 1}, 1]]; (* Michael Somos, Oct 22 2014 *)
Table[Multinomial[n, n, n], {n, 0, 100}] (* Emanuele Munarini, Oct 25 2016 *)
CoefficientList[Series[Hypergeometric2F1[1/3, 2/3, 1, 27*x], {x, 0, 5}], x] (* Bradley Klee, Feb 28 2018 *)
PROG
(PARI) {a(n) = if( n<0, 0, (3*n)! / n!^3)}; /* Michael Somos, Dec 03 2002 */
(PARI) {a(n) = my(A, m); if( n<1, n==0, m=1; A = 1 + O(x); while( m<=n, m*=3; A = subst( (1 + 2*x) * subst(A, x, (x/3)^3), x, serreverse(x * (1 + x + x^2) / (1 + 2*x)^3 / 3 + O(x^m)))); polcoeff(A, n))}; /* Michael Somos, Dec 03 2002 */
(Magma) [Factorial(3*n)/(Factorial(n))^3: n in [0..20] ]; // Vincenzo Librandi, Aug 20 2011
(Maxima) makelist(multinomial_coeff(n, n, n), n, 0, 24); /* Emanuele Munarini, Oct 25 2016 */
(GAP) List([0..20], n->Factorial(3*n)/Factorial(n)^3); # Muniru A Asiru, Mar 31 2018
(Python)
from math import factorial
def A006480(n): return factorial(3*n)//factorial(n)**3 # Chai Wah Wu, Oct 04 2022
CROSSREFS
Row 3 of A187783.
Related to diagonal of rational functions: A268545-A268555. Elliptic Integrals: A002894, A113424, A000897. Factors: A005809, A000984. Integrals: A007004, A024486. Sphere Curves: A318245, A318495.
Sequence in context: A037959 A247150 A201073 * A138462 A002896 A266734
KEYWORD
nonn,easy,nice
AUTHOR
EXTENSIONS
a(14)-a(16) from Eric W. Weisstein
Terms a(17) and beyond from T. D. Noe, Jun 29 2008
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 18 22:56 EDT 2024. Contains 370952 sequences. (Running on oeis4.)