login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A183204 Central terms of triangle A181544. 39
1, 4, 48, 760, 13840, 273504, 5703096, 123519792, 2751843600, 62659854400, 1451780950048, 34116354472512, 811208174862904, 19481055861877120, 471822589361293680, 11511531876280913760, 282665135367572129040 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The g.f. for row n of triangle A181544 is (1-x)^(3n+1)*Sum_{k>=0}C(n+k-1,k)^3*x^k.

This sequence is s_7 in Cooper's paper. - Jason Kimberley, Nov 06 2012

Diagonal of the rational function R(x,y,z,w) = 1/(1 - (w*x*y + w*x*z + w*y*z + x*y + x*z + y + z)). - Gheorghe Coserea, Jul 14 2016

This is one of the Apery-like sequences - see Cross-references. - Hugo Pfoertner, Aug 06 2017

Every prime eventually divides some term of this sequence. - Amita Malik, Aug 20 2017

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..702 (terms 0..499 from Jason Kimberley)

S. Cooper, Sporadic sequences, modular forms and new series for 1/pi, Ramanujan J., December 2012, Volume 29, Issue 1, pp 163-183.

Shaun Cooper, Jesús Guillera, Armin Straub, and Wadim Zudilin, Crouching AGM, Hidden Modularity, arXiv:1604.01106 [math.NT], 5-April-2016.

Ofir Gorodetsky, New representations for all sporadic Apéry-like sequences, with applications to congruences, arXiv:2102.11839 [math.NT], 2021. See s7 p. 3.

Amita Malik and Armin Straub, Divisibility properties of sporadic Apéry-like numbers, Research in Number Theory, 2016, 2:5.

Robert Osburn, Armin Straub, and Wadim Zudilin, A modular supercongruence for 6F5: an Apéry-like story, arXiv:1701.04098 [math.NT], 2017.

Wadim Zudilin, A generating function of the squares of Legendre polynomials, preprint arXiv:1210.2493 [math.CA], 2012.

FORMULA

a(n) = [x^n] (1-x)^(3n+1) * Sum_{k>=0} C(n+k-1,k)^3*x^k.

a(n) = Sum_{j=0}^{n} C(n,j)^2 * C(2*j,n) * C(j+n,j). [Formula of Wadim Zudilin provided by Jason Kimberley, Nov 06 2012]

1/Pi = sqrt(7) Sum_{n>=0} (-1)^n a(n) (11895n + 1286)/22^(3n+3). [Cooper, equation (41)] - Jason Kimberley, Nov 06 2012

G.f.: sqrt((1-13*x+(1-26*x-27*x^2)^(1/2))/(1-21*x+8*x^2+(1-8*x)*(1-26*x-27*x^2)^(1/2)))*hypergeom([1/12,5/12],[1],13824*x^7/(1-21*x+8*x^2+(1-8*x)*(1-26*x-27*x^2)^(1/2))^3)^2. - Mark van Hoeij, May 07 2013

a(n) ~ 3^(3*n+3/2) / (4 * (Pi*n)^(3/2)). - Vaclav Kotesovec, Apr 05 2015

G.f. A(x) satisfies 1/(1+4*x)^2 * A( x/(1+4*x)^3 ) = 1/(1+2*x)^2 * A( x^2/(1+2*x)^3 ) [see Cooper, Guillera, Straub, Zudilin]. - Joerg Arndt, Apr 08 2016

a(n) = (-1)^n*binomial(3n+1,n)* 4F3({-n,n+1,n+1,n+1};{1,1,2(n+1)}; 1). - M. Lawrence Glasser, May 15 2016

Conjecture D-finite with recurrence: n^3*a(n) - (2*n-1)*(13*n^2-13*n+4)*a(n-1) - 3*(n-1)*(3*n-4)*(3*n-2)*a(n-2) = 0. - R. J. Mathar, May 15 2016

0 = (-x^2+26*x^3+27*x^4)*y''' + (-3*x+117*x^2+162*x^3)*y'' + (-1+86*x+186*x^2)*y' + (4+24*x)*y, where y is g.f. - Gheorghe Coserea, Jul 14 2016

EXAMPLE

Triangle A181544 begins:

(1);

1, (4), 1;

1, 20, (48), 20, 1;

1, 54, 405, (760), 405, 54, 1;

1, 112, 1828, 8464, (13840), 8464, 1828, 112, 1; ...

MATHEMATICA

Table[Sum[Binomial[n, j]^2 * Binomial[2*j, n] * Binomial[j+n, j], {j, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Apr 05 2015 *)

PROG

(PARI) {a(n)=polcoeff((1-x)^(3*n+1)*sum(j=0, 2*n, binomial(n+j, j)^3*x^j), n)}

(Magma) P<x>:=PolynomialRing(Integers()); C:=Binomial;

A183204:=func<n|Coefficient((1-x)^(3*n+1)*&+[C(n+j, j)^3*x^j:j in[0..2*n]], n)>; // or directly:

A183204:=func<k|&+[C(k, j)^2*C(2*j, k)*C(j+k, j):j in[0..k]]>;

[A183204(n):n in[0..16]]; // Jason Kimberley, Oct 29 2012

CROSSREFS

Cf. A181544, A183205.

Related to diagonal of rational functions: A268545-A268555.

The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692,A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)

Sequence in context: A214819 A211198 A179235 * A328183 A047711 A089448

Adjacent sequences: A183201 A183202 A183203 * A183205 A183206 A183207

KEYWORD

nonn,easy

AUTHOR

Paul D. Hanna, Dec 30 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 29 14:48 EST 2022. Contains 358431 sequences. (Running on oeis4.)