login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A279619 Expansion of g.f. of A002652 in powers of the g.f. of A279618. 36
1, 2, 22, 336, 6006, 117348, 2428272, 52303680, 1160427510, 26337699740, 608642155660, 14272471122560, 338764038330480, 8123136091556640, 196484811079765440, 4788469475873867520, 117465323079289162230, 2898183118626011393100 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

G.f. is the square root of the g.f. for A183204.

This sequence is c_n in Theorem 6.1 in O'Brien's thesis.

Also see Conjecture 5.4 in Chan, Cooper and Sica's paper.

REFERENCES

L. O'Brien, Modular forms and two new integer sequences at level 7, Massey University, 2016.

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..500

H. H. Chan, S. Cooper, F. Sica, Congruences satisfied by Apéry-like numbers, International Journal of Number Theory, 2010, 6(01), 89-97. Conjecture 5.4.

Lynette O'Brien, Modular forms and two new integer sequences at level 7

Lynette O'Brien, Modular forms and two new integer sequences at level 7

FORMULA

(n+1)^2*a_7(n+1) = (26*n^2+13*n+2)*a_7(n) + 3*(3*n-1)*(3*n-2)*a_7(n-1), a(0)=1, a(-1)=0.

Conjecture: For any positive integer n and any prime p with p equiv. 0,1,2 or 4 modulo 7, a(n) equiv. a(n)=a(n_0)a(n_1)...a(n_r) modulo p, where n=n_0+n_1p+...n_rp^r is the base p representation of n.

Conjecture: a(n)~ C n^(-3/2) 27^n where C=0.0955223052681267146513079107870296256727946666510071798669948234917659...

EXAMPLE

G.f. = 1 + 2*x + 22*x^2 + 336*x^3 + 6006*x^4 + ....

MATHEMATICA

RecurrenceTable[{a[n+1] == ((26*n^2+13*n+2)*a[n] + 3*(3*n-1)*(3*n-2)*a[n-1])/ (n + 1)^2, a[-1] == 0, a[0] == 1}, a, {n, 0, 50}] (* G. C. Greubel, Jul 04 2018 *)

CoefficientList[Series[Sqrt[7]*(1/(25 - 80*x + 24*Sqrt[1 - 27*x]*Sqrt[1+x]))^(1/4) * Hypergeometric2F1[1/12, 5/12, 1, 13824*x^7/(1 - 21*x + 8*x^2 + Sqrt[1 - 27*x] * (1 - 8*x)*Sqrt[1+x])^3], {x, 0, 20}], x] (* Vaclav Kotesovec, Jul 04 2018 *)

PROG

(MAGMA) I:=[2, 22]; [1] cat [n le 2 select I[n] else ((26*n^2-39*n+15)* Self(n-1) + 3*(3*n-4)*(3*n-5)*Self(n-2))/n^2 : n in [1..50]] // G. C. Greubel, Jul 04 2018

CROSSREFS

Cf. A183204, A279613, A279618.

The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692, A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)

Sequence in context: A299824 A266888 A155674 * A245113 A078232 A151615

Adjacent sequences:  A279616 A279617 A279618 * A279620 A279621 A279622

KEYWORD

nonn

AUTHOR

Lynette O'Brien, Dec 15 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 23 03:37 EDT 2018. Contains 316519 sequences. (Running on oeis4.)