login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A104684 Triangle read by rows: T(n,k) is the number of lattice paths from (0,0) to (n,n) using steps E=(1,0), N=(0,1) and D=(1,1) (i.e., bilateral Schroeder paths), having k D=(1,1) steps. 12
1, 2, 1, 6, 6, 1, 20, 30, 12, 1, 70, 140, 90, 20, 1, 252, 630, 560, 210, 30, 1, 924, 2772, 3150, 1680, 420, 42, 1, 3432, 12012, 16632, 11550, 4200, 756, 56, 1, 12870, 51480, 84084, 72072, 34650, 9240, 1260, 72, 1, 48620, 218790, 411840, 420420, 252252 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Row sums are the central Delannoy numbers (A001850). T(n,0)=A000984(n) (the central binomial numbers). Alternating row sums = 1 See the Bataille link.
Row reversed version of A063007.
Another version of [0, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...] DELTA [1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, ...] = 1; 0, 1; 0, 2, 1; 0, 6, 6, 1; 0, 20, 30, 12, 1; 0, 70, 140, 90, 20, 1; ..., where DELTA is the operator defined in A084938. - Philippe Deléham, Apr 25 2005
Terms in row n are the coefficients of the Legendre polynomial P(n,2x+1) with decreasing powers of x.
Coefficient array of x^n*Legendre_P(n,2/x+1). - Paul Barry, Apr 19 2009
LINKS
Michel Bataille, Quickie Q.944, Maths. Magazine, 77, No. 4, p. 321, Answer A.944, Maths. Magazine, 77, No. 4, p. 327.
Ömür Deveci and Anthony G. Shannon, Some aspects of Neyman triangles and Delannoy arrays, Mathematica Montisnigri, Volume L, 2021.
Robert A. Sulanke, Objects Counted by the Central Delannoy Numbers, Journal of Integer Sequences, Volume 6, 2003, Article 03.1.5.
FORMULA
T(n, k) = binomial(n, k)*binomial(2n-k, n) (0 <= k <= n).
G.f.: G(t, z) = 1/sqrt((1-tz)^2 - 4z).
T(n,k) = binomial(2(n-k),n-k)*binomial(2n-k,k). - Paul Barry, Mar 14 2006
T(2n,n) = C(2n,n)*C(3n,n) = C(n,n)*C(2n,n)*C(3n,n) = A006480(n). - Paul Barry, Mar 14 2006
G.f.: 1/(1-xy-2x/(1-xy-x/(1-xy-x/(1-xy-x/(1-xy-x... (continued fraction). - Paul Barry, Jan 06 2009
T(n,k) = Sum_{j=0..n} C(n,j)^2*C(j,k). - Paul Barry, May 28 2009
T(n,k) = [x^k]F(-n,-n;1;1+x). - Paul Barry, Oct 05 2010
T(n,k) = (n-k+1)*A060693(n,k). - Peter Luschny, May 17 2011
T(n,k) = A054142(n,k)*A000984(n-k). - Philippe Deléham, Nov 19 2011.
T(n,k) = abs(A130595(n,k)*A092392(n,k)). - Reinhard Zumkeller, Dec 20 2013
EXAMPLE
T(2,1)=6 because we have NED, NDE, EDN, END, DEN and DNE.
The triangle T(n, k) begins:
n\k 0 1 2 3 4 5 6 7 8 ...
0: 1
1: 2 1
2: 6 6 1
3: 20 30 12 1
4: 70 140 90 20 1
5: 252 630 560 210 30 1
6: 924 2772 3150 1680 420 42 1
7: 3432 12012 16632 11550 4200 756 56 1
8: 12870 51480 84084 72072 34650 9240 1260 72 1
...
row n=9: 48620 218790 411840 420420 252252 90090 18480 1980 90 1,
row n=10: 184756 923780 1969110 2333760 1681680 756756 210210 34320 2970 110 1.
... reformatted by Wolfdieter Lang, Sep 11 2016
MAPLE
T:=(n, k)->binomial(n, k)*binomial(2*n-k, n): for n from 0 to 9 do seq(T(n, k), k=0..n) od; # yields sequence in triangular form
MATHEMATICA
T[n_, k_] := Binomial[n, k] Binomial[2n-k, n];
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 19 2018 *)
PROG
(Haskell)
a104684 n k = a104684_tabl !! n !! k
a104684_row n = a104684_tabl !! n
a104684_tabl = map (map abs) $
zipWith (zipWith (*)) a130595_tabl a092392_tabl
-- Reinhard Zumkeller, Dec 20 2013
CROSSREFS
Sequence in context: A269336 A300700 A046521 * A060538 A260848 A110183
KEYWORD
nonn,tabl,easy
AUTHOR
Emeric Deutsch, Apr 24 2005
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 25 05:18 EDT 2024. Contains 371964 sequences. (Running on oeis4.)