This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A214262 Expansion of eta(q)^5 * eta(q^3) * eta(q^6)^4 / eta(q^2)^4 in powers of q. 36
 1, -5, 9, -11, 24, -45, 50, -53, 81, -120, 120, -99, 170, -250, 216, -203, 288, -405, 362, -264, 450, -600, 528, -477, 601, -850, 729, -550, 840, -1080, 962, -821, 1080, -1440, 1200, -891, 1370, -1810, 1530, -1272, 1680, -2250, 1850, -1320, 1944, -2640, 2208 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Zagier (2009) writes "... associated to the weight 3 Eisenstein series g(z) = Sigma b(n)q^n = q - 5q^2 + 9q^3 - 11q^4 + ...". Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882). REFERENCES D. Zagier, Integral solutions of Apery-like recurrence equations, in: Groups and Symmetries: from Neolithic Scots to John McKay, CRM Proc. Lecture Notes 47, Amer. Math. Soc., Providence, RI, 2009, pp. 349-366. LINKS Indranil Ghosh, Table of n, a(n) for n = 1..2000 FORMULA Expansion of (1/9) * c(q) * b(q)^2 * c(q^2) / b(q^2) = (c(q)^3 - 8*c(q^2)^3) / 27 in powers of q where b(), c() are cubic AGM theta functions. Euler transform of period 6 sequence [ -5, -1, -6, -1, -5, -6, ...]. - Michael Somos, Oct 06 2013 a(n) is multiplicative with a(3^e) = 9^e, a(2^e)  = -(4^(e+1) + 9*(-1)^(e+1)) / 5, a(p^e)  = ((p^2)^(e+1) - 1) / (p^2 - 1) if p == 1 (mod 6), a(p^e)  = ((p^2)^(e+1) - (-1)^(e+1)) / (p^2 + 1) if p == 5 (mod 6). G.f. is a period 1 Fourier series which satisfies f(-1 / (6 t)) = 192^(1/2) (t/i)^3 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A111661. G.f.: Sum_{k>0} -(-1)^k * k^2 * x^k / (1 + x^k + x^(2*k)) = Sum_{k>0} Kronecker( -3, k) * (x^k - x^(2*k)) / (1 + x^k)^3. EXAMPLE G.f. = q - 5*q^2 + 9*q^3 - 11*q^4 + 24*q^5 - 45*q^6 + 50*q^7 - 53*q^8 + 81*q^9 + ... MATHEMATICA a[ n_] := If[ n < 1, 0, DivisorSum[ n, -(-1)^# #^2 JacobiSymbol[ -3, n/#] &]]; (* Michael Somos, Oct 06 2013 *) a[ n_] := SeriesCoefficient[ q QPochhammer[ q]^5 QPochhammer[ q^3] QPochhammer[ q^6]^4 / QPochhammer[ q^2]^4, {q, 0, n}]; (* Michael Somos, Oct 06 2013 *) PROG (PARI) {a(n) = if( n<1, 0, sumdiv( n, d, -(-1)^d * d^2 * kronecker( -3, n/d)))}; /* Michael Somos, Oct 06 2013 */ (PARI) {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x + A)^5 * eta(x^3 + A) * eta(x^6 + A)^4 / eta(x^2 + A)^4, n))}; (PARI) {a(n) = my(A, p, e); if( n<0, 0, A = factor( n); prod( k=1, matsize(A)[1], if(p = A[k, 1], e = A[k, 2]; if( p==3, 9^e, if( p==2, -(4^(e+1) + 9*(-1)^(e+1)) / 5, if( p%6==1, ((p^2)^(e+1) - 1) / (p^2 - 1), ((p^2)^(e+1) - (-1)^(e+1)) / (p^2 + 1)))))))}; CROSSREFS Cf. A111661. The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692, A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.) Sequence in context: A314604 A309137 A190894 * A288143 A120228 A053749 Adjacent sequences:  A214259 A214260 A214261 * A214263 A214264 A214265 KEYWORD sign,mult AUTHOR Michael Somos, Jul 09 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 17 15:01 EDT 2019. Contains 328116 sequences. (Running on oeis4.)