login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A214262 Expansion of eta(q)^5 * eta(q^3) * eta(q^6)^4 / eta(q^2)^4 in powers of q. 36
1, -5, 9, -11, 24, -45, 50, -53, 81, -120, 120, -99, 170, -250, 216, -203, 288, -405, 362, -264, 450, -600, 528, -477, 601, -850, 729, -550, 840, -1080, 962, -821, 1080, -1440, 1200, -891, 1370, -1810, 1530, -1272, 1680, -2250, 1850, -1320, 1944, -2640, 2208 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Zagier (2009) writes "... associated to the weight 3 Eisenstein series g(z) = Sigma b(n)q^n = q - 5q^2 + 9q^3 - 11q^4 + ...".

Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

REFERENCES

D. Zagier, Integral solutions of Apery-like recurrence equations, in: Groups and Symmetries: from Neolithic Scots to John McKay, CRM Proc. Lecture Notes 47, Amer. Math. Soc., Providence, RI, 2009, pp. 349-366.

LINKS

Indranil Ghosh, Table of n, a(n) for n = 1..2000

D. Zagier, Integral solutions of Apery-like recurrence equations.

FORMULA

Expansion of (1/9) * c(q) * b(q)^2 * c(q^2) / b(q^2) = (c(q)^3 - 8*c(q^2)^3) / 27 in powers of q where b(), c() are cubic AGM theta functions.

Euler transform of period 6 sequence [ -5, -1, -6, -1, -5, -6, ...]. - Michael Somos, Oct 06 2013

a(n) is multiplicative with a(3^e) = 9^e, a(2^e)  = -(4^(e+1) + 9*(-1)^(e+1)) / 5, a(p^e)  = ((p^2)^(e+1) - 1) / (p^2 - 1) if p == 1 (mod 6), a(p^e)  = ((p^2)^(e+1) - (-1)^(e+1)) / (p^2 + 1) if p == 5 (mod 6).

G.f. is a period 1 Fourier series which satisfies f(-1 / (6 t)) = 192^(1/2) (t/i)^3 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A111661.

G.f.: Sum_{k>0} -(-1)^k * k^2 * x^k / (1 + x^k + x^(2*k)) = Sum_{k>0} Kronecker( -3, k) * (x^k - x^(2*k)) / (1 + x^k)^3.

EXAMPLE

G.f. = q - 5*q^2 + 9*q^3 - 11*q^4 + 24*q^5 - 45*q^6 + 50*q^7 - 53*q^8 + 81*q^9 + ...

MATHEMATICA

a[ n_] := If[ n < 1, 0, DivisorSum[ n, -(-1)^# #^2 JacobiSymbol[ -3, n/#] &]]; (* Michael Somos, Oct 06 2013 *)

a[ n_] := SeriesCoefficient[ q QPochhammer[ q]^5 QPochhammer[ q^3] QPochhammer[ q^6]^4 / QPochhammer[ q^2]^4, {q, 0, n}]; (* Michael Somos, Oct 06 2013 *)

PROG

(PARI) {a(n) = if( n<1, 0, sumdiv( n, d, -(-1)^d * d^2 * kronecker( -3, n/d)))}; /* Michael Somos, Oct 06 2013 */

(PARI) {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x + A)^5 * eta(x^3 + A) * eta(x^6 + A)^4 / eta(x^2 + A)^4, n))};

(PARI) {a(n) = my(A, p, e); if( n<0, 0, A = factor( n); prod( k=1, matsize(A)[1], if(p = A[k, 1], e = A[k, 2]; if( p==3, 9^e, if( p==2, -(4^(e+1) + 9*(-1)^(e+1)) / 5, if( p%6==1, ((p^2)^(e+1) - 1) / (p^2 - 1), ((p^2)^(e+1) - (-1)^(e+1)) / (p^2 + 1)))))))};

CROSSREFS

Cf. A111661.

The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692, A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)

Sequence in context: A102182 A314604 A190894 * A288143 A120228 A053749

Adjacent sequences:  A214259 A214260 A214261 * A214263 A214264 A214265

KEYWORD

sign,mult

AUTHOR

Michael Somos, Jul 09 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 20 01:39 EDT 2018. Contains 316378 sequences. (Running on oeis4.)