login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A008457 a(n) = Sum_{ d >= 1, d divides n} (-1)^(n-d)*d^3. 12
1, 7, 28, 71, 126, 196, 344, 583, 757, 882, 1332, 1988, 2198, 2408, 3528, 4679, 4914, 5299, 6860, 8946, 9632, 9324, 12168, 16324, 15751, 15386, 20440, 24424, 24390, 24696, 29792, 37447, 37296, 34398, 43344, 53747, 50654, 48020, 61544, 73458 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

The modular form (e(1)-e(2))(e(1)-e(3)) for GAMMA_0 (2) (with constant term -1/16 omitted).

a(n) = r_8(n)/16, where r_8(n) = A000143(n) is the number of integral solutions of Sum_{j=1..8} x_j^2 = n (with the order of the summands respected). See the Grosswald reference, and the Hardy reference, pp. 146-147, eq. (9.9.3) and sect. 9.10. - Wolfdieter Lang, Jan 09 2017

REFERENCES

N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 77, Eq. (31.6).

E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, NY, 1985, p. 121, eq. (9.19).

G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, AMS Chelsea Publishing, Providence, Rhode Island, 2002, p. 142.

F. Hirzebruch et al., Manifolds and Modular Forms, Vieweg 1994 pp. 77, 133.

H. Petersson, Modulfunktionen und Quadratische Formen, Springer-Verlag, 1982; p. 179.

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..5000

M. Peters, Sums of nine squares, Acta Arith., 102 (2002), 131-135.

FORMULA

Multiplicative with a(2^e) = (8^(e+1)-15)/7, a(p^e) = (p^(3*e+3)-1)/(p^3-1), p > 2. - Vladeta Jovovic, Sep 10 2001

a(n) = (-1)^n*(sum of cubes of even divisors of n - sum of cubes of odd divisors of n). Sum_{n>0} n^3*x^n*(15*x^n-(-1)^n)/(1-x^(2*n)). - Vladeta Jovovic, Oct 24 2002

G.f.: Sum_{k>0} k^3 x^k/(1 - (-x)^k). - Michael Somos, Sep 25 2005

G.f.: (1/16)*(-1+(Product_{k>0} (1-(-q)^k)/(1+(-q)^k))^8). [corrected by Vaclav Kotesovec, Sep 26 2015]

Dirichlet g.f. zeta(s)*zeta(s-3)*(1-2^(1-s)+2^(4-2s)), Dirichlet convolution of A001158 and the quasi-finite (1,-2,0,16,0,0,...). - R. J. Mathar, Mar 04 2011

A138503(n) = -(-1)^n * a(n).

Bisection: a(2*k-1) = A001158(2*k-1), a(2*k) = 8*A001158(k) - A051000(k), k >= 1. In the Hardy reference a(n) = sigma^*_3(n). - Wolfdieter Lang, Jan 07 2017

G.f.: (theta_3(x)^8 - 1)/16, where theta_3() is the Jacobi theta function. - Ilya Gutkovskiy, Apr 17 2018

EXAMPLE

G.f. = q + 7*q^2 + 28*q^3 + 71*q^4 + 126*q^5 + 196*q^6 + 344*q^7 + 583*q^8 + ...

MAPLE

(1/16)*product((1+q^n)^8/(1-q^n)^8, n=1..60);

MATHEMATICA

nmax = 40; Rest[CoefficientList[Series[Product[((1-(-q)^k)/(1+(-q)^k))^8, {k, 1, nmax}]/16, {q, 0, nmax}], q]] (* Vaclav Kotesovec, Sep 26 2015 *)

a[n_] := DivisorSum[n, (-1)^(n-#)*#^3&]; Array[a, 40] (* Jean-Fran├žois Alcover, Dec 01 2015 *)

a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, x]^8 - 1) / 16, {x, 0, n}]; (* Michael Somos, Aug 10 2018 *)

PROG

(PARI) {a(n) = if( n<1, 0, (-1)^n * sumdiv(n, d, (-1)^d * d^3))}; /* Michael Somos, Sep 25 2005 */

CROSSREFS

Cf. A000143, A001158, A051000, A064027, A002129, A048272, A138503.

Sequence in context: A230285 A033582 A176362 * A138503 A223765 A064951

Adjacent sequences:  A008454 A008455 A008456 * A008458 A008459 A008460

KEYWORD

nonn,mult

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 24 00:38 EDT 2019. Contains 323528 sequences. (Running on oeis4.)