login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A008457 a(n) = Sum_{ d >= 1, d divides n} (-1)^(n-d)*d^3. 12
1, 7, 28, 71, 126, 196, 344, 583, 757, 882, 1332, 1988, 2198, 2408, 3528, 4679, 4914, 5299, 6860, 8946, 9632, 9324, 12168, 16324, 15751, 15386, 20440, 24424, 24390, 24696, 29792, 37447, 37296, 34398, 43344, 53747, 50654, 48020, 61544, 73458 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
The modular form (e(1)-e(2))(e(1)-e(3)) for GAMMA_0 (2) (with constant term -1/16 omitted).
a(n) = r_8(n)/16, where r_8(n) = A000143(n) is the number of integral solutions of Sum_{j=1..8} x_j^2 = n (with the order of the summands respected). See the Grosswald reference, and the Hardy reference, pp. 146-147, eq. (9.9.3) and sect. 9.10. - Wolfdieter Lang, Jan 09 2017
REFERENCES
Nathan J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 77, Eq. (31.6).
Emil Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, NY, 1985, p. 121, eq. (9.19).
G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, AMS Chelsea Publishing, Providence, Rhode Island, 2002, p. 142.
F. Hirzebruch, T. Berger and R. Jung, Manifolds and Modular Forms, Vieweg, 1994, pp. 77, 133.
Hans Petersson, Modulfunktionen und Quadratische Formen, Springer-Verlag, 1982; p. 179.
LINKS
Meinhard Peters, Sums of nine squares, Acta Arith., Vol. 102 (2002), pp. 131-135.
FORMULA
Multiplicative with a(2^e) = (8^(e+1)-15)/7, a(p^e) = (p^(3*e+3)-1)/(p^3-1), p > 2. - Vladeta Jovovic, Sep 10 2001
a(n) = (-1)^n*(sum of cubes of even divisors of n - sum of cubes of odd divisors of n), see A051000. Sum_{n>0} n^3*x^n*(15*x^n-(-1)^n)/(1-x^(2*n)). - Vladeta Jovovic, Oct 24 2002
G.f.: Sum_{k>0} k^3 x^k/(1 - (-x)^k). - Michael Somos, Sep 25 2005
G.f.: (1/16)*(-1+(Product_{k>0} (1-(-q)^k)/(1+(-q)^k))^8). [corrected by Vaclav Kotesovec, Sep 26 2015]
Dirichlet g.f. zeta(s)*zeta(s-3)*(1-2^(1-s)+2^(4-2s)), Dirichlet convolution of A001158 and the quasi-finite (1,-2,0,16,0,0,...). - R. J. Mathar, Mar 04 2011
A138503(n) = -(-1)^n * a(n).
Bisection: a(2*k-1) = A001158(2*k-1), a(2*k) = 8*A001158(k) - A051000(k), k >= 1. In the Hardy reference a(n) = sigma^*_3(n). - Wolfdieter Lang, Jan 07 2017
G.f.: (theta_3(x)^8 - 1)/16, where theta_3() is the Jacobi theta function. - Ilya Gutkovskiy, Apr 17 2018
Sum_{k=1..n} a(k) ~ Pi^4 * n^4 / 384. - Vaclav Kotesovec, Sep 21 2020
EXAMPLE
G.f. = q + 7*q^2 + 28*q^3 + 71*q^4 + 126*q^5 + 196*q^6 + 344*q^7 + 583*q^8 + ...
MAPLE
(1/16)*product((1+q^n)^8/(1-q^n)^8, n=1..60);
MATHEMATICA
nmax = 40; Rest[CoefficientList[Series[Product[((1-(-q)^k)/(1+(-q)^k))^8, {k, 1, nmax}]/16, {q, 0, nmax}], q]] (* Vaclav Kotesovec, Sep 26 2015 *)
a[n_] := DivisorSum[n, (-1)^(n-#)*#^3&]; Array[a, 40] (* Jean-François Alcover, Dec 01 2015 *)
a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, x]^8 - 1) / 16, {x, 0, n}]; (* Michael Somos, Aug 10 2018 *)
f[2, e_] := (8^(e+1)-15)/7; f[p_, e_] := (p^(3*e+3)-1)/(p^3-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 21 2020 *)
PROG
(PARI) {a(n) = if( n<1, 0, (-1)^n * sumdiv(n, d, (-1)^d * d^3))}; /* Michael Somos, Sep 25 2005 */
CROSSREFS
Sequence in context: A033582 A176362 A358999 * A138503 A223765 A064951
KEYWORD
nonn,mult,easy
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 29 05:41 EDT 2024. Contains 371264 sequences. (Running on oeis4.)