OFFSET
0,5
COMMENTS
The generalized Narayana numbers of type D_n (row n of this triangle) are defined as the entries of the h-vector of the simplicial complex dual to the generalized associahedron of type D_n [Fomin & Reading, p.60]. For the corresponding triangle of f-vectors see A080721. For Narayana numbers of root systems of type A and type B see A001263 and A008459 respectively.
REFERENCES
T. K. Petersen, Eulerian Numbers, Birkhauser, 2015, Chapter 12.
LINKS
S. Fomin, N. Reading, Root systems and generalized associahedra, Lecture notes for IAS/Park-City 2004, arXiv:math/0505518 [math.CO], 2005-2008.
FORMULA
For n >= 2, T(n,k) = binomial(n,k)^2 - n/(n-1)*binomial(n-1,k-1)*binomial(n-1,k).
EXAMPLE
Root systems of type D_n are defined only for n >= 2. It seems convenient to complete the array to form a lower unit triangular matrix.
Triangle starts
n\k|..0....1....2....3....4....5....6
=====================================
0..|..1
1..|..1....1
2..|..1....2....1
3..|..1....6....6....1
4..|..1...12...24...12....1
5..|..1...20...70...70...20....1
6..|..1...30..165..280..165...30....1
...
CROSSREFS
KEYWORD
AUTHOR
Peter Bala, Oct 28 2008
STATUS
approved