login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A181543 Triangle of cubed binomial coefficients, T(n,k) = C(n,k)^3, read by rows. 16
1, 1, 1, 1, 8, 1, 1, 27, 27, 1, 1, 64, 216, 64, 1, 1, 125, 1000, 1000, 125, 1, 1, 216, 3375, 8000, 3375, 216, 1, 1, 343, 9261, 42875, 42875, 9261, 343, 1, 1, 512, 21952, 175616, 343000, 175616, 21952, 512, 1, 1, 729, 46656, 592704, 2000376, 2000376, 592704, 46656, 729, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,5
COMMENTS
Diagonal of rational function R(x,y,z,t) = 1/(1 + y + z + x*y + y*z + t*x*z + (t+1)*x*y*z) with respect to x, y, z, i.e., T(n,k) = [(xyz)^n*t^k] R(x,y,z,t). - Gheorghe Coserea, Jul 01 2018
LINKS
Jeffrey S. Geronimo, Hugo J. Woerdeman, and Chung Y. Wong, The autoregressive filter problem for multivariable degree one symmetric polynomials, arXiv:2101.00525 [math.CA], 2021.
FORMULA
Row sums equal A000172, the Franel numbers.
Central terms are A002897(n) = C(2n,n)^3.
Antidiagonal sums equal A181545;
The g.f. of the antidiagonal sums is Sum_{n>=0} (3n)!/(n!)^3 * x^(3n)/(1-x-x^2)^(3n+1).
G.f. for column k: [Sum_{j=0..2k} A181544(k,j)*x^j]/(1-x)^(3k+1), where the row sums of A181544 equals De Bruijn's s(3,n) = (3n)!/(n!)^3.
G.f.: A(x,y) = Sum_{n>=0} (3n)!/n!^3 * x^(2n)*y^n/(1-x-x*y)^(3n+1). - Paul D. Hanna, Nov 04 2010
EXAMPLE
Triangle begins:
1;
1, 1;
1, 8, 1;
1, 27, 27, 1;
1, 64, 216, 64, 1;
1, 125, 1000, 1000, 125, 1;
1, 216, 3375, 8000, 3375, 216, 1;
1, 343, 9261, 42875, 42875, 9261, 343, 1;
1, 512, 21952, 175616, 343000, 175616, 21952, 512, 1;
1, 729, 46656, 592704, 2000376, 2000376, 592704, 46656, 729, 1;
...
MAPLE
T:= (n, k)-> binomial(n, k)^3:
seq(seq(T(n, k), k=0..n), n=0..10); # Alois P. Heinz, Jan 06 2021
MATHEMATICA
Flatten[Table[Binomial[n, k]^3, {n, 0, 10}, {k, 0, n}]] (* Harvey P. Dale, May 23 2011 *)
PROG
(PARI) T(n, k)=binomial(n, k)^3
for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print())
(PARI) T(n, k)=polcoeff(polcoeff(sum(m=0, n, (3*m)!/m!^3*x^(2*m)*y^m/(1-x-x*y+x*O(x^n))^(3*m+1)), n, x), k, y)
for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print()) \\ Paul D. Hanna, Nov 04 2010
(PARI)
diag(expr, N=22, var=variables(expr)) = {
my(a = vector(N));
for (k = 1, #var, expr = taylor(expr, var[#var - k + 1], N));
for (n = 1, N, a[n] = expr;
for (k = 1, #var, a[n] = polcoeff(a[n], n-1)));
return(a);
};
x='x; y='y; z='z; t='t;
concat(apply(Vec, diag(1/(1 + y + z + x*y + y*z + t*x*z + (t+1)*x*y*z), 10, [x, y, z]))) \\ Gheorghe Coserea, Jul 01 2018
CROSSREFS
Cf. A000172 (row sums), A181545 (antidiagonal sums), A002897, A181544, A248658.
Variants: A008459, A007318.
Sequence in context: A220718 A176283 A323324 * A141696 A178122 A142470
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Oct 30 2010
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 25 18:39 EDT 2024. Contains 373707 sequences. (Running on oeis4.)