|
|
A003739
|
|
Number of spanning trees in W_5 X P_n.
|
|
3
|
|
|
45, 55125, 59719680, 64416925125, 69471840376125, 74922901143552000, 80801651828175064605, 87141671714980415665125, 93979154798291442260459520, 101353134069755356151903203125
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
REFERENCES
|
F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129-154.
|
|
LINKS
|
P. Raff, Table of n, a(n) for n = 1..200
F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Preliminary version of paper that appeared in Ars Combin. 49 (1998), 129-154.
F. Faase, Counting Hamiltonian cycles in product graphs
F. Faase, Results from the counting program
P. Raff, Spanning Trees in Grid Graphs, arXiv:0809.2551 [math.CO], 2008.
P. Raff, Analysis of the Number of Spanning Trees of W_5 x P_n. Contains sequence, recurrence, generating function, and more.
P. Raff, Analysis of the Number of Spanning Trees of Grid Graphs.
Index entries for sequences related to trees
Index entries for linear recurrences with constant coefficients, signature (1152,-80640,1442883,-4477824,4477824,-1442883,80640,-1152,1).
|
|
FORMULA
|
a(n) = 1152*a(n-1) - 80640*a(n-2) + 1442883*a(n-3) - 4477824*a(n-4) + 4477824*a(n-5) - 1442883*a(n-6) + 80640*a(n-7) - 1152*a(n-8) + a(n-9).
G.f.: 45*x*(1 +73*x -3456*x^2 +4534*x^3 +4534*x^4 -3456*x^5 +73*x^6 +x^7)/(1 -1152*x +80640*x^2 -1442883*x^3 +4477824*x^4 -447782*x^5 +1442883*x^6 -80640*x^7 +1152*x^8 -x^9).
|
|
MAPLE
|
seq(coeff(series(45*x*(1+73*x-3456*x^2+4534*x^3+4534*x^4-3456*x^5+73*x^6 +x^7)/(1-1152*x+80640*x^2-1442883*x^3+4477824*x^4-447782*x^5+1442883*x^6 -80640*x^7+1152*x^8-x^9), x, n+1), x, n), n = 1..20); # G. C. Greubel, Dec 25 2019
|
|
MATHEMATICA
|
Rest@CoefficientList[Series[45*x*(1 +73*x -3456*x^2 +4534*x^3 +4534*x^4 -3456*x^5 +73*x^6 +x^7)/(1 -1152*x +80640*x^2 -1442883*x^3 +4477824*x^4 -447782*x^5 +1442883*x^6 -80640*x^7 +1152*x^8 -x^9), {x, 0, 20}], x] (* G. C. Greubel, Dec 25 2019 *)
|
|
PROG
|
(PARI) my(x='x+O('x^20)); Vec(45*x*(1 +73*x -3456*x^2 +4534*x^3 +4534*x^4 -3456*x^5 +73*x^6 +x^7)/(1 -1152*x +80640*x^2 -1442883*x^3 +4477824*x^4 -447782*x^5 +1442883*x^6 -80640*x^7 +1152*x^8 -x^9)) \\ G. C. Greubel, Dec 25 2019
(MAGMA) R<x>:=PowerSeriesRing(Integers(), 20); Coefficients(R!( 45*x*(1 +73*x -3456*x^2 +4534*x^3 +4534*x^4 -3456*x^5 +73*x^6 +x^7)/(1 -1152*x +80640*x^2 -1442883*x^3 +4477824*x^4 -447782*x^5 +1442883*x^6 -80640*x^7 +1152*x^8 -x^9) )); // G. C. Greubel, Dec 25 2019
(Sage)
def A077952_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( 45*x*(1 +73*x -3456*x^2 +4534*x^3 +4534*x^4 -3456*x^5 +73*x^6 +x^7)/(1 -1152*x +80640*x^2 -1442883*x^3 +4477824*x^4 -447782*x^5 +1442883*x^6 -80640*x^7 +1152*x^8 -x^9) ).list()
a=A077952_list(20); a[1:] # G. C. Greubel, Dec 25 2019
|
|
CROSSREFS
|
Sequence in context: A287434 A225991 A125113 * A300198 A145319 A089626
Adjacent sequences: A003736 A003737 A003738 * A003740 A003741 A003742
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Frans J. Faase
|
|
EXTENSIONS
|
Added recurrence from Faase's web page. - N. J. A. Sloane, Feb 03 2009
|
|
STATUS
|
approved
|
|
|
|