login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A003739 Number of spanning trees in W_5 X P_n. 3
45, 55125, 59719680, 64416925125, 69471840376125, 74922901143552000, 80801651828175064605, 87141671714980415665125, 93979154798291442260459520, 101353134069755356151903203125 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

REFERENCES

F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129-154.

LINKS

P. Raff, Table of n, a(n) for n = 1..200

F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Preliminary version of paper that appeared in Ars Combin. 49 (1998), 129-154.

F. Faase, Counting Hamilton cycles in product graphs

F. Faase, Results from the counting program

P. Raff, Spanning Trees in Grid Graphs.

P. Raff, Analysis of the Number of Spanning Trees of W_5 x P_n. Contains sequence, recurrence, generating function, and more.

P. Raff, Analysis of the Number of Spanning Trees of Grid Graphs.

Index entries for sequences related to trees

FORMULA

a(n) = 1152 a(n-1)

- 80640 a(n-2)

+ 1442883 a(n-3)

- 4477824 a(n-4)

+ 4477824 a(n-5)

- 1442883 a(n-6)

+ 80640 a(n-7)

- 1152 a(n-8)

+ a(n-9)

G.f.: -45x(x^7+73x^6-3456x^5+4534x^4+4534x^3-3456x^2+73x+1) / (x^9-1152x^8+80640x^7 -1442883x^6+4477824x^5 -4477824x^4+1442883x^3 -80640x^2+1152x-1).

CROSSREFS

Sequence in context: A007537 A225991 A125113 * A145319 A089626 A110479

Adjacent sequences:  A003736 A003737 A003738 * A003740 A003741 A003742

KEYWORD

nonn,easy,mult

AUTHOR

Frans J. Faase

EXTENSIONS

Added recurrence from Faase's web page. - N. J. A. Sloane, Feb 03 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified March 25 13:37 EDT 2017. Contains 284081 sequences.