login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002129 Generalized sum of divisors function: excess of sum of odd divisors of n over sum of even divisors of n.
(Formerly M3236 N1307)
48
1, -1, 4, -5, 6, -4, 8, -13, 13, -6, 12, -20, 14, -8, 24, -29, 18, -13, 20, -30, 32, -12, 24, -52, 31, -14, 40, -40, 30, -24, 32, -61, 48, -18, 48, -65, 38, -20, 56, -78, 42, -32, 44, -60, 78, -24, 48, -116, 57, -31, 72, -70, 54, -40, 72, -104, 80, -30, 60, -120, 62, -32, 104, -125 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Coefficients in expansion of Sum_{n >= 1} x^n/(1+x^n)^2 = Sum_{n >= 1} (-1)^(n-1)*n*x^n/(1-x^n).

REFERENCES

L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 162, #16, (6), 3rd formula.

S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 259-262.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Seiichi Manyama, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe)

S. R. Finch, The "One-Ninth" Constant

Heekyoung Hahn, Convolution sums of some functions on divisors, arXiv:1507.04426 [math.NT], 2015.

P. A. MacMahon, Divisors of numbers and their continuations in the theory of partitions, Proc. London Math. Soc., (2) 19 (1919), 75-113; Coll. Papers II, pp. 303-341.

FORMULA

Multiplicative with a(p^e) = 3-2^(e+1) if p = 2; (p^(e+1)-1)/(p-1) if p > 2. - David W. Wilson, Sep 01 2001

G.f.: Sum_{n>=1} n*x^n*(1-3*x^n)/(1-x^(2*n)). - Vladeta Jovovic, Oct 15 2002

L.g.f.: Sum_{n>=1} a(n)*x^n/n = log[ Sum_{n>=0} x^(n(n+1)/2) ], the log of the g.f. of A010054. - Paul D. Hanna, Jun 28 2008

Dirichlet g.f. zeta(s)*zeta(s-1)*(1-4/2^s). Dirichlet convolution of A000203 and the quasi-finite (1,-4,0,0,0,...). - R. J. Mathar, Mar 04 2011

a(n) = A000593(n)-A146076(n). - R. J. Mathar, Mar 05 2011

EXAMPLE

a(28) = 40 because the sum of the even divisors of 28 (2, 4, 14 and 28) = 48 and the sum of the odd divisors of 28 (1 and 7) = 8, their absolute difference being 40.

MAPLE

A002129 := proc(n) -add((-1)^d*d, d=numtheory[divisors](n)) ; end proc: # R. J. Mathar, Mar 05 2011

MATHEMATICA

f[n_] := Block[{c = Divisors@ n}, Plus @@ Select[c, EvenQ] - Plus @@ Select[c, OddQ]]; Array[f, 64] (* Robert G. Wilson v, Mar 04 2011 *)

a[n_] := DivisorSum[n, -(-1)^#*#&]; Array[a, 80] (* Jean-Fran├žois Alcover, Dec 01 2015 *)

PROG

(PARI) a(n)=if(n<1, 0, -sumdiv(n, d, (-1)^d*d))

(PARI) {a(n)=n*polcoeff(log(sum(k=0, (sqrtint(8*n+1)-1)\2, x^(k*(k+1)/2))+x*O(x^n)), n)} \\ Paul D. Hanna, Jun 28 2008

CROSSREFS

A diagonal of A060044.

a(2^n) = -A036563(n+1). a(3^n) = A003462(n+1).

First differences of -A024919(n).

Cf. A010054.

Sequence in context: A016719 A196999 A090370 * A113184 A136004 A248864

Adjacent sequences:  A002126 A002127 A002128 * A002130 A002131 A002132

KEYWORD

sign,easy,nice,mult

AUTHOR

N. J. A. Sloane

EXTENSIONS

Better description and more terms from Robert G. Wilson v, Dec 14 2000

More terms from N. J. A. Sloane, Mar 19 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 17 18:42 EST 2018. Contains 317276 sequences. (Running on oeis4.)