login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A005319 a(n) = 6a(n-1) - a(n-2).
(Formerly M3599)
16
0, 4, 24, 140, 816, 4756, 27720, 161564, 941664, 5488420, 31988856, 186444716, 1086679440, 6333631924, 36915112104, 215157040700, 1254027132096, 7309005751876, 42600007379160, 248291038523084, 1447146223759344, 8434586304032980 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Solutions y of the equation 2x^2-y^2=2; the corresponding x values are given by A001541. - N-E. Fahssi, Feb 25 2008

The lower intermediate convergents to 2^(1/2) beginning with 4/3, 24/17, 140/99, 816/577, form a strictly increasing sequence; essentially, numerators=A005319 and denominators=A001541. - Clark Kimberling, Aug 26 2008

Numbers n such that (ceiling(sqrt(n*n/2)))^2 = 1 + n*n/2. - Ctibor O. Zizka, Nov 09 2009

REFERENCES

P. de la Harpe, Topics in Geometric Group Theory, Univ. Chicago Press, 2000, p. 160, middle display.

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Table of n, a(n) for n=0..21.

John M. Campbell, An Integral Representation of Kekulé Numbers, and Double Integrals Related to Smarandache Sequences, arXiv preprint arXiv:1105.3399, 2011.

Tanya Khovanova, Recursive Sequences

Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992.

Simon Plouffe, 1031 Generating Functions and Conjectures, Université du Québec à Montréal, 1992.

Index entries for linear recurrences with constant coefficients, signature (6,-1).

FORMULA

G.f.: 4*x / ( 1-6*x+x^2 ). - Simon Plouffe in his 1992 dissertation.

G.f. for signed version beginning with 1: (1+2*x+x^2)/(1+6*x+x^2).

For any term n of the sequence, 2*n^2 + 4 is a perfect square. Lim a(n)/a(n-1) = 3 + 2*Sqrt(2) - Gregory V. Richardson, Oct 06 2002

a(n) = [(3+2*Sqrt(2))^n - (3-2*Sqrt(2))^n] / Sqrt(2) - Gregory V. Richardson, Oct 06 2002

(-1)^(n+1) = A090390(n+1) + A001542(n+1) + A046729(n) - a(n) (conjectured). Generated by the floretion - .5'i + .5'j - .5i' + .5j' + 'ii' - 'jj' - 2'kk' + 'ij' + .5'ik' + 'ji' + .5'jk' + .5'ki' + .5'kj' + e - Creighton Dement, Nov 17 2004

For n>0, a(n)=A000129(n+1)^2-A000129(n-1)^2; a(n)=A046090(n-1)+A001652(n); e.g. 816=120+696; a(n)=A001653(n)-A001653(n-1); e.g. 816=985-169 - Charlie Marion Jul 22 2005

a(n)=4*A001109(n). - M. F. Hasler, Mar 2009

MATHEMATICA

LinearRecurrence[{6, -1}, {0, 4}, 22] (* Jean-François Alcover, Sep 26 2017 *)

CROSSREFS

Sequence in context: A183512 A204199 A262376 * A155119 A114169 A121102

Adjacent sequences:  A005316 A005317 A005318 * A005320 A005321 A005322

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified October 23 20:10 EDT 2017. Contains 293813 sequences.