login
A000388
Number of permutations of an n-sequence discordant with three given permutations (see reference) in n-2 places.
(Formerly M4139 N1717)
8
6, 20, 180, 1106, 9292, 82980, 831545, 9139482, 109595496, 1423490744, 19911182207, 298408841160, 4770598226296, 81037124739588, 1457607971046492, 27675791180024802, 553166885187641670, 11609691036091870428, 255273744004170486155, 5868308906885934514178
OFFSET
4,1
REFERENCES
J. Riordan, Discordant permutations, Scripta Math., 20 (1954), 14-23.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
J. Riordan, Discordant permutations, Scripta Math., 20 (1954), 14-23. [Annotated scanned copy]
FORMULA
a(n) = coefficient of y^2 in sum_0^n sigma_{n, k}(n - k)!(y - 1)^k on y where the sigma_{n, k} have generating function sigma(t, u) = (1 - 2t^2(u^2) - 2t^2(1 + t)u^3 + 3t^4(u^4))(1 - tu)^(-1)(1 - (1 + 2t)u - tu^2 + t^3(u^3))^(-1). - Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Feb 17 2001
MAPLE
seq(f(n, 2), n=5..30); # code for f(n, k) is given in A000440 - Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Feb 17 2001
MATHEMATICA
sigma[t_, u_] = (1 - 2 t^2 (u^2) - 2 t^2 (1 + t) u^3 + 3 t^4 (u^4)) (1 - t* u)^(-1) (1 - (1 + 2 t) u - t *u^2 + t^3 (u^3))^(-1); ds[t_, n_] := D[sigma[t, u], {u, n}] /. u -> 0; su[n_] := su[n] = Sum[ Coefficient[ds[t, n]/n!, t, j]*(n - j)!*(y - 1)^j, {j, 0, n}]; f[n_, k_] := Coefficient[su[n], y, k]; Table[f[n, 2], {n, 4, 23}] (* Jean-François Alcover, Sep 01 2011, after Maple prog. *)
CROSSREFS
KEYWORD
nonn
EXTENSIONS
More terms from Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Feb 17 2001
STATUS
approved