This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A000388 Number of permutations of an n-sequence discordant with three given permutations (see reference) in n-2 places. (Formerly M4139 N1717) 8
 6, 20, 180, 1106, 9292, 82980, 831545, 9139482, 109595496, 1423490744, 19911182207, 298408841160, 4770598226296, 81037124739588, 1457607971046492, 27675791180024802, 553166885187641670, 11609691036091870428, 255273744004170486155, 5868308906885934514178 (list; graph; refs; listen; history; text; internal format)
 OFFSET 4,1 REFERENCES J. Riordan, Discordant permutations, Scripta Math., 20 (1954), 14-23. N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS J. Riordan, Discordant permutations, Scripta Math., 20 (1954), 14-23. [Annotated scanned copy] FORMULA a(n) = coefficient of y^2 in sum_0^n sigma_{n, k}(n - k)!(y - 1)^k on y where the sigma_{n, k} have generating function sigma(t, u) = (1 - 2t^2(u^2) - 2t^2(1 + t)u^3 + 3t^4(u^4))(1 - tu)^(-1)(1 - (1 + 2t)u - tu^2 + t^3(u^3))^(-1). - Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Feb 17 2001 MAPLE seq(f(n, 2), n=5..30); # code for f(n, k) is given in A000440 - Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Feb 17 2001 MATHEMATICA sigma[t_, u_] = (1 - 2 t^2 (u^2) - 2 t^2 (1 + t) u^3 + 3 t^4 (u^4)) (1 - t* u)^(-1) (1 - (1 + 2 t) u - t *u^2 + t^3 (u^3))^(-1); ds[t_, n_] := D[sigma[t, u], {u, n}] /. u -> 0; su[n_] := su[n] = Sum[ Coefficient[ds[t, n]/n!, t, j]*(n - j)!*(y - 1)^j, {j, 0, n}]; f[n_, k_] := Coefficient[su[n], y, k]; Table[f[n, 2], {n, 4, 23}] (* Jean-François Alcover, Sep 01 2011, after Maple prog. *) CROSSREFS Cf. A000500, A000470, A000440, A000476, A000380, A000492. Sequence in context: A027148 A095854 A027268 * A227769 A309454 A267903 Adjacent sequences:  A000385 A000386 A000387 * A000389 A000390 A000391 KEYWORD nonn AUTHOR EXTENSIONS More terms from Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Feb 17 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 18 20:13 EDT 2019. Contains 328197 sequences. (Running on oeis4.)