login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002134 Generalized divisor function. Partitions of n using only 3 types of piles.
(Formerly M1367 N0530)
6
1, 2, 5, 10, 15, 25, 37, 52, 67, 97, 117, 154, 184, 235, 277, 338, 385, 469, 531, 630, 698, 810, 910, 1038, 1144, 1295, 1425, 1577, 1741, 1938, 2089, 2301, 2505, 2700, 2970, 3189, 3444, 3703, 4004, 4242, 4617, 4882, 5244, 5558, 5999, 6221, 6755, 7050, 7576 (list; graph; refs; listen; history; text; internal format)
OFFSET

6,2

REFERENCES

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Alois P. Heinz, Table of n, a(n) for n = 6..1000

P. A. MacMahon, Divisors of numbers and their continuations in the theory of partitions, Proc. London Math. Soc., 19 (1919), 75-113; Coll. Papers II, pp. 303-341.

FORMULA

G.f.: Sum_{i>=1} Sum_{j=1..i-1} Sum_{k=1..j-1} x^(i+j+k)/((1-x^i)*(1-x^j)* (1-x^k)). - Geoffrey Critzer, Sep 13 2012

EXAMPLE

a(8) = 5 because we have 5+2+1, 4+3+1, 4+2+1+1, 3+2+2+1, 3+2+1+1+1.

MATHEMATICA

nn=40; sss=Sum[Sum[Sum[x^(i+j+k)/(1-x^i)/(1-x^j)/(1-x^k), {k, 1, j-1}], {j, 1, i-1}], {i, 1, nn}]; Drop[CoefficientList[Series[sss, {x, 0, nn}], x], 6]  (* Geoffrey Critzer, Sep 13 2012 *)

CROSSREFS

A diagonal of A060177.

Column k=3 of A116608. - Alois P. Heinz, Nov 07 2012

Sequence in context: A099738 A064513 A117582 * A243971 A062472 A135061

Adjacent sequences:  A002131 A002132 A002133 * A002135 A002136 A002137

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane.

EXTENSIONS

Better description and more terms from Naohiro Nomoto, Jan 24 2002

More terms from Vladeta Jovovic, Nov 02 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 22 00:32 EST 2019. Contains 329383 sequences. (Running on oeis4.)