login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A039834 a(n+2) = -a(n+1) + a(n) (signed Fibonacci numbers) with a(-2) = a(-1) = 1; or Fibonacci numbers (A000045) extended to negative indices. 35
1, 1, 0, 1, -1, 2, -3, 5, -8, 13, -21, 34, -55, 89, -144, 233, -377, 610, -987, 1597, -2584, 4181, -6765, 10946, -17711, 28657, -46368, 75025, -121393, 196418, -317811, 514229, -832040, 1346269, -2178309, 3524578, -5702887, 9227465, -14930352, 24157817 (list; graph; refs; listen; history; text; internal format)
OFFSET

-2,6

COMMENTS

Knuth defines the negaFibonacci numbers as follows: F(-1) = 1, F(-2) = -1, F(-3) = 2, F(-4) = -3, F(-5) = 5, ..., F(-n) = (-1)^(n-1) F(n). See A215022, A215023 for the negaFibonacci representation of n. - N. J. A. Sloane, Aug 03 2012

The ratio of successive terms converges to -1/phi. - Jonathan Vos Post, Dec 10 2006

Let a(n) := F(n) * (-1)^binom(n, 2). Then a(m - n) * a(m + n) = a(m + 1) * a(m - 1) * a(n)^2 - a(n + 1) * a(n - 1) * a(m)^2. This plus gcd(f[n], f[m]) = |f[gcd(n, m)]| makes a[] a strong elliptic divisibility sequence. Likewise F(n) * (-1)^binom(n - 1, 2), but no other asSIGNation (mod scaling). - Bill Gosper, May 28 2008

The sequence a(n), n >= 0 := 0, 1, -1, 2, -3, 5, -8, 13, ... is the inverse binomial transform of A000045. - Philippe Deléham, Oct 28 2008

Equals the INVERTi transform of A038754, assuming that an additional A038754(0) = 1 is added in front of A038754, and that the a(n) are prefixed with another 1 and then get offset 0. - Gary W. Adamson, Jan 08 2011

If we remove a(-2) and then set the offset to 0, we have the INVERT transform of a signed A011782: (1, -1, 2, -4, 8, -16, 32, ...).- Gary W. Adamson, Jan 08 2011

The sequence 0, 1, -1, 2, -3, 5, -8, 13, -21, 34, -55, 89, -144,.. (starting at offset 0) is the Lucas U(-1,-1) sequence. - R. J. Mathar, Jan 08 2013

This sequence appears in the formula for 1/rho(5)^n, with rho(5) = (1 + sqrt(5))/2 = phi (golden section), when written in the power basis <1, rho(5)> of the quadratic number field Q(rho(5)): 1/rho(5)^n = a(n+1) * 1 + a(n) * rho(5), n >= -2. - Wolfdieter Lang, Nov 04 2013

a(n) = A227431(n + 4, n + 3). - Reinhard Zumkeller, Feb 01 2014

REFERENCES

D. E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7.1.3, p. 168, Eq. (145). - N. J. A. Sloane, Aug 03 2012

LINKS

T. D. Noe, Table of n, a(n) for n = -2..500

M. Cetin Firengiz, A. Dil, Generalized Euler-Seidel method for second order recurrence relations, Notes on Number Theory and Discrete Mathematics, Vol. 20, 2014, No. 4, 21-32.

Jiřı Jina and Pavel Trojovský, On determinants of some tridiagonal matrices connected with Fibonacci numbers, International Journal of Pure and Applied Mathematics, Volume 88 No. 4 2013, 569-575; ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version).

Wikipedia, Lucas sequence

Index entries for linear recurrences with constant coefficients, signature (-1,1)

Index entries for Lucas sequences

FORMULA

G.f.: (1+2*x)/(x^2*(1+x-x^2)).

a(n-2) = Sum_{k, 0 <= k <= n}(-2)^k*A055830(n, k). - Philippe Deléham, Oct 18 2006

a(n) = ((phi - 1)^n + 1/phi*(-(1/phi) - 1)^(n+1))/sqrt(5), where phi = (1 + sqrt(5))/2. - Arkadiusz Wesolowski, Oct 28 2012

a(n) = sum(k = 1..n, binomial(n - 1, k - 1)*fib(k)*(-1)^(n - k)), n > 0, fib(k) = A000045(k), a(0) = 1. - Perminova Maria, Jan 22 2013

G.f.: 1 + x/( Q(0) - x ) where Q(k) = 1 - x/(x*k - 1 )/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Feb 23 2013

G.f.: 2 - 2/(Q(0) + 1) where Q(k) = 1 + 2*x/(1 - x/(x + 1/Q(k+1) )); (continued fraction ). - Sergei N. Gladkovskii, Apr 05 2013

G.f.: 1 + x^2 + x^3 + x/Q(0) , where Q(k)= 1 + (k+1)*x/(1 - x/(x + (k+1)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, Apr 23 2013

G.f.: 1/(G(0)*x^3) + (2*x^2+x-1)/x^3, where G(k) = 1 + 2*x*(k+1)/(k + 2 - x*(k+2)*(k+3)/(x*(k+3) + (k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 27 2013

G.f.: Q(0)/x - 1/x + 1+ x, where Q(k) = 1 + x^2 + x^3 + k*x*(1+x^2) - x^2*(1 + x*(k+2))*(1+k*x)/Q(k+1) ; (continued fraction). - Sergei N. Gladkovskii, Jan 13 2014

EXAMPLE

From - Wolfdieter Lang, Nov 04 2013 (Start)

With the golden section phi = rho(5) = (1 + sqrt(5))/2:

n = -2: phi^2 = a(-1)*1 + a(-2)*phi = 1 + phi,

n = -1: phi = a(0)*1 + a(-1)*phi = phi, (trivial)

n =  0: 1/phi^0 =  a(1)*1 + a(0)*phi = 1, (trivial)

n =  1: 1/phi = a(2)*1 + a(1)*phi = -1 + phi,

n =  2: 1/phi^2 = a(3)*1 + a(2)*phi = 2 - phi, ... (End)

G.f. = x^-2 + x^-1 + x - x^2 + 2*x^3 - 3*x^4 + 5*x^5 - 8*x^6 + 13*x^7 -...

MAPLE

a:= n-> (Matrix([[0, 1], [1, -1]])^n) [1, 2]: seq(a(n), n=-2..50); # Alois P. Heinz, Nov 01 2008

MATHEMATICA

LinearRecurrence[{-1, 1}, {1, 1}, 60] (* Vladimir Joseph Stephan Orlovsky, May 25 2011 *)

Fibonacci[-Range[-2, 37]] (* Michael Somos, Jun 04 2016 *)

PROG

(PARI) a(n) = fibonacci(-n);

(Haskell)

a039834 n = a039834_list !! (n+2)

a039834_list = 1 : 1 : zipWith (-) a039834_list (tail a039834_list)

-- Reinhard Zumkeller, Jul 05 2013

(Sage)

def A039834():

    x, y = 1, 1

    while true:

        yield x

        x, y = y, x - y

a = A039834()

[a.next() for i in range(40)]  # Peter Luschny, Jul 11 2013

(Sage)

def A039834_list(len):

    R.<t> = LaurentSeriesRing(ZZ, 't', default_prec = len)

    f = (-2*t-1)/(t^4-t^3-t^2)

    return f.list()

A039834_list(40) # Peter Luschny, Nov 21 2014

CROSSREFS

Cf. A000045, A038754, A011782, A215022, A215023.

Sequence in context: A185357 A132636 A152163 * A000045 A236191 A020695

Adjacent sequences:  A039831 A039832 A039833 * A039835 A039836 A039837

KEYWORD

sign,easy,nice

AUTHOR

Alexander Grasser (pyropunk(AT)usa.net)

EXTENSIONS

Signs corrected by Len Smiley and N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 3 06:42 EST 2016. Contains 278698 sequences.