The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A127595 a(n) = F(4n) - 2F(2n) where F(n) = Fibonacci numbers A000045. 5
 0, 1, 15, 128, 945, 6655, 46080, 317057, 2176335, 14925184, 102320625, 701373311, 4807434240, 32951037313, 225850798095, 1548007091840, 10610205501105, 72723448842367, 498453982018560, 3416454544730369, 23416728143799375 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS a(n) is a divisibility sequence; that is, if h|k then a(h)|a(k). LINKS Michael De Vlieger, Table of n, a(n) for n = 0..1196 E. L. Roettger and H. C. Williams, Appearance of Primes in Fourth-Order Odd Divisibility Sequences, J. Int. Seq., Vol. 24 (2021), Article 21.7.5. Hugh Williams and R. K. Guy, Some fourth-order linear divisibility sequences, Intl. J. Number Theory vol. 7 (5) (2011) 1255-1277. H. C. Williams and R. K. Guy, Odd and even linear divisibility sequences of order 4, INTEGERS, 2015, #A33. Index entries for linear recurrences with constant coefficients, signature (10,-23,10,-1). FORMULA a(n) = F(2n)*(L(2n)-2) = A001906(n)*A004146(n), where L(n) are the Lucas numbers A000032. a(2n) = 5*(F(2n))^3*L(2n), a(2n+1) = F(2n+1)*L(2n+1)^3. a(n) = [(Phi^(2n))-1]^2*[(Phi^(4n))-1]/[sqrt(5)*(Phi^(4n))]. G.f.: A(x)=x*(1+(r+2)*x+x^2)/((1-r*x+x^2)*(1-(r^2-2)*x+x^2)) at r=3. The case r=2 is A000578. MATHEMATICA With[{r = 3}, CoefficientList[Series[x (1 + (r + 2) x + x^2)/((1 - r x + x^2)*(1 - (r^2 - 2)*x + x^2)), {x, 0, 20}], x]] (* Michael De Vlieger, Nov 09 2021 *) CROSSREFS Cf. A000032, A000045, A001906, A004146. Sequence in context: A198850 A283120 A209404 * A056579 A294054 A156922 Adjacent sequences:  A127592 A127593 A127594 * A127596 A127597 A127598 KEYWORD easy,nonn AUTHOR Peter Bala, Apr 10 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 5 04:45 EDT 2022. Contains 355087 sequences. (Running on oeis4.)