login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A058876
Triangle read by rows: T(n,k) = number of labeled acyclic digraphs with n nodes, containing exactly n+1-k points of in-degree zero (n >= 1, 1<=k<=n).
8
1, 1, 2, 1, 9, 15, 1, 28, 198, 316, 1, 75, 1610, 10710, 16885, 1, 186, 10575, 211820, 1384335, 2174586, 1, 441, 61845, 3268125, 64144675, 416990763, 654313415, 1, 1016, 336924, 43832264, 2266772550, 44218682312, 286992935964, 450179768312
OFFSET
1,3
REFERENCES
F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 19, (1.6.4).
R. W. Robinson, Counting labeled acyclic digraphs, pp. 239-273 of F. Harary, editor, New Directions in the Theory of Graphs. Academic Press, NY, 1973.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..1275 (rows 1..50)
R. W. Robinson, Enumeration of acyclic digraphs, Manuscript. (Annotated scanned copy)
FORMULA
Harary and Prins (following Robinson) give a recurrence.
EXAMPLE
Triangle begins:
1;
1, 2;
1, 9, 15;
1, 28, 198, 316;
1, 75, 1610, 10710, 16885;
...
MATHEMATICA
a[p_, k_] :=a[p, k] =If[p == k, 1, Sum[Binomial[p, k]*a[p - k, n]*(2^k - 1)^n*2^(k (p - k - n)), {n, 1, p - k}]];
Map[Reverse, Table[Table[a[p, k], {k, 1, p}], {p, 1, 6}]] // Grid (* Geoffrey Critzer, Aug 29 2016 *)
PROG
(PARI)
A058876(n)={my(v=vector(n)); for(n=1, #v, v[n]=vector(n, i, if(i==n, 1, my(u=v[n-i]); sum(j=1, #u, 2^(i*(#u-j))*(2^i-1)^j*binomial(n, i)*u[j])))); v}
{ my(T=A058876(10)); for(n=1, #T, print(Vecrev(T[n]))) } \\ Andrew Howroyd, Dec 27 2021
CROSSREFS
Columns give A058877, A060337.
Diagonals give A003025, A003026, A060335.
Row sums give A003024.
Cf. A122078 (unlabeled case).
Sequence in context: A180001 A204371 A199887 * A214884 A083162 A178075
KEYWORD
nonn,easy,tabl
AUTHOR
N. J. A. Sloane, Jan 07 2001
EXTENSIONS
More terms from Vladeta Jovovic, Apr 10 2001
STATUS
approved