OFFSET
1,3
REFERENCES
F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 19, (1.6.4).
R. W. Robinson, Counting labeled acyclic digraphs, pp. 239-273 of F. Harary, editor, New Directions in the Theory of Graphs. Academic Press, NY, 1973.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..1275 (rows 1..50)
R. W. Robinson, Enumeration of acyclic digraphs, Manuscript. (Annotated scanned copy)
FORMULA
Harary and Prins (following Robinson) give a recurrence.
EXAMPLE
Triangle begins:
1;
1, 2;
1, 9, 15;
1, 28, 198, 316;
1, 75, 1610, 10710, 16885;
...
MATHEMATICA
a[p_, k_] :=a[p, k] =If[p == k, 1, Sum[Binomial[p, k]*a[p - k, n]*(2^k - 1)^n*2^(k (p - k - n)), {n, 1, p - k}]];
Map[Reverse, Table[Table[a[p, k], {k, 1, p}], {p, 1, 6}]] // Grid (* Geoffrey Critzer, Aug 29 2016 *)
PROG
(PARI)
A058876(n)={my(v=vector(n)); for(n=1, #v, v[n]=vector(n, i, if(i==n, 1, my(u=v[n-i]); sum(j=1, #u, 2^(i*(#u-j))*(2^i-1)^j*binomial(n, i)*u[j])))); v}
{ my(T=A058876(10)); for(n=1, #T, print(Vecrev(T[n]))) } \\ Andrew Howroyd, Dec 27 2021
CROSSREFS
KEYWORD
AUTHOR
N. J. A. Sloane, Jan 07 2001
EXTENSIONS
More terms from Vladeta Jovovic, Apr 10 2001
STATUS
approved