login
A060337
Number of labeled acyclic digraphs with n nodes containing exactly n-2 points of in-degree zero.
2
15, 198, 1610, 10575, 61845, 336924, 1751076, 8801325, 43141175, 207347778, 980828238, 4578689115, 21135851625, 96628899960, 438068838536, 1971349880985, 8813183238315, 39169902510270, 173172640973010
OFFSET
3,1
REFERENCES
F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 19, (1.6.4).
R. W. Robinson, Counting labeled acyclic digraphs, pp. 239-273 of F. Harary, editor, New Directions in the Theory of Graphs. Academic Press, NY, 1973.
LINKS
Index entries for linear recurrences with constant coefficients, signature (21,-189,955,-2982,5964,-7640,6048,-2688,512).
FORMULA
G.f.: x^3*(15 - 117*x + 287*x^2 - 138*x^3 - 300*x^4 + 280*x^5)/((1 - x)*(1 - 2*x)*(1 - 4*x))^3. - Andrew Howroyd, Dec 27 2021
MATHEMATICA
LinearRecurrence[{21, -189, 955, -2982, 5964, -7640, 6048, -2688, 512}, {15, 198, 1610, 10575, 61845, 336924, 1751076, 8801325, 43141175}, 20] (* Harvey P. Dale, Mar 23 2022 *)
PROG
(PARI) \\ requires A058876.
my(T=A058876(25)); vector(#T-2, n, T[n+2][n]) \\ Andrew Howroyd, Dec 27 2021
CROSSREFS
Third column of A058876.
Sequence in context: A185899 A345445 A152587 * A180789 A078264 A322914
KEYWORD
nonn,easy
AUTHOR
Vladeta Jovovic, Apr 10 2001
STATUS
approved