login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A091932
Primes that remain prime when their leading digit in binary representation is replaced by 0.
8
7, 11, 13, 19, 23, 29, 37, 43, 61, 67, 71, 83, 101, 107, 131, 139, 151, 157, 181, 199, 211, 229, 241, 263, 269, 293, 317, 353, 359, 383, 419, 449, 467, 479, 523, 541, 571, 601, 613, 619, 643, 661, 691, 709, 739, 751, 769, 823, 829, 859, 991, 1021, 1031, 1061
OFFSET
1,1
COMMENTS
A053645(a(n)) is prime.
Primes p such that p - 2^floor(log_2(p)) is prime - T. D. Noe, Apr 08 2011
FORMULA
A118953(A049084(a(n))) = 1; subsequence of A065380. - Reinhard Zumkeller, May 07 2006
EXAMPLE
A000040(12)=37 --> '100101' --> '[1]00101' --> '[0]00101' --> '101' --> 5, therefore 37 is a term.
MATHEMATICA
Select[Prime[Range[100]], PrimeQ[# - 2^Floor[Log[2, #]]] &] (* T. D. Noe, Apr 08 2011 *)
Select[Prime[Range[200]], PrimeQ[FromDigits[Rest[ IntegerDigits[ #, 2]], 2]]&] (* Harvey P. Dale, Apr 08 2016 *)
PROG
(Python)
from sympy import isprime, primerange
def ok(p): return isprime((1 << (p.bit_length()-1)) ^ p)
def aupto(lim): return [p for p in primerange(1, lim+1) if ok(p)]
print(aupto(1061)) # Michael S. Branicky, Jul 11 2021
CROSSREFS
Cf. A091931.
Cf. A118958.
Sequence in context: A152469 A115558 A067466 * A165349 A160024 A063911
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Feb 14 2004
STATUS
approved