login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A053645 Distance to largest power of 2 less than or equal to n; write n in binary, change the first digit to zero, and convert back to decimal. 59
0, 0, 1, 0, 1, 2, 3, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,6

COMMENTS

a(A004760(n+1)) = n. - Reinhard Zumkeller, May 20 2009

Triangle read by rows in which row n lists the first 2^n nonnegative integers (A001477), n >= 0. Right border gives A000225. Row sums give A006516. See example. - Omar E. Pol, Oct 17 2013

Without the initial zero also: zeroless numbers in base 3 (A032924: 1, 2, 11, 12, 21, ...), ternary digits decreased by 1 and read as binary. - M. F. Hasler, Jun 22 2020

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..10000

J.-P. Allouche and J. Shallit, The ring of k-regular sequences, preprint, Theoretical Computer Sci., 98 (1992), 163-197.

J.-P. Allouche and J. Shallit, The ring of k-regular sequences, Theoretical Computer Sci., 98 (1992), 163-197 (see Ex. 24).

Index entries for sequences related to binary expansion of n

FORMULA

a(n) = n - 2^A000523(n).

G.f.: 1/(1-x) * ((2x-1)/(1-x) + Sum_{k>=1} 2^(k-1)*x^2^k). - Ralf Stephan, Apr 18 2003

a(n) = (A006257(n)-1)/2. - N. J. A. Sloane, May 16 2003

a(1) = 0, a(2n) = 2a(n), a(2n+1) = 2a(n) + 1. - N. J. A. Sloane, Sep 13 2003

a(n) = A062050(n) - 1. - N. J. A. Sloane, Jun 12 2004

a(n) = f(n-1,1) with f(n,m) = if n < m then n else f(n-m,2*m). - Reinhard Zumkeller, May 20 2009

a(n) = (1 - A036987(n-1))*(1 + a(n-1)) for n>1 with a(1)=0. - Mikhail Kurkov, Jul 16 2019

EXAMPLE

From Omar E. Pol, Oct 17 2013: (Start)

Written as an irregular triangle the sequence begins:

0;

0,1;

0,1,2,3;

0,1,2,3,4,5,6,7;

0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15;

0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31;

(End)

MAPLE

seq(n - 2^ilog2(n), n=1..1000); # Robert Israel, Dec 23 2015

MATHEMATICA

Table[n - 2^Floor[Log2[n]], {n, 100}] (* IWABUCHI Yu(u)ki, May 25 2017 *)

Table[FromDigits[Rest[IntegerDigits[n, 2]], 2], {n, 100}] (* IWABUCHI Yu(u)ki, May 25 2017 *)

PROG

(Haskell)

a053645 1 = 0

a053645 n = 2 * a053645 n' + b  where (n', b) = divMod n 2

-- Reinhard Zumkeller, Aug 28 2014

a053645_list = concatMap (0 `enumFromTo`) a000225_list

-- Reinhard Zumkeller, Feb 04 2013, Mar 23 2012

(PARI) a(n)=n-2^(#binary(n)-1) \\ Charles R Greathouse IV, Sep 02 2015

(MAGMA) [n - 2^Ilog2(n): n in [1..70]]; // Vincenzo Librandi, Jul 18 2019

CROSSREFS

Cf. A000225, A000523, A002262, A004760, A006257, A006516, A030308, A036987, A053644, A062050, A083741, A160588.

Sequence in context: A278164 A328480 A279681 * A212598 A274650 A294648

Adjacent sequences:  A053642 A053643 A053644 * A053646 A053647 A053648

KEYWORD

nonn,easy

AUTHOR

Henry Bottomley, Mar 22 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 31 11:50 EDT 2020. Contains 338101 sequences. (Running on oeis4.)