This site is supported by donations to The OEIS Foundation.

Index to OEIS: Section Br

From OeisWiki
Jump to: navigation, search

Index to OEIS: Section Br


[ Aa | Ab | Al | Am | Ap | Ar | Ba | Be | Bi | Bl | Bo | Br | Ca | Ce | Ch | Cl | Coa | Coi | Com | Con | Cor | Cu | Cy | Da | De | Di | Do | Ea | Ed | El | Eu | Fa | Fe | Fi | Fo | Fu | Ga | Ge | Go | Gra | Gre | Ha | He | Ho | Ia | In | J | K | La | Lc | Li | Lo | Lu | M | Mag | Map | Mat | Me | Mo | Mu | N | Na | Ne | Ni | No | Nu | O | Pac | Par | Pas | Pea | Per | Ph | Poi | Pol | Pos | Pow | Pra | Pri | Pro | Ps | Qua | Que | Ra | Rea | Rel | Res | Ro | Ru | Sa | Se | Si | Sk | So | Sp | Sq | St | Su | Sw | Ta | Te | Th | To | Tra | Tri | Tu | U | V | Wa | We | Wi | X | Y | Z | 1 | 2 | 3 | 4 ]


bracelets , sequences related to :

bracelets , A000029*, A005232, A005513-A005516, A007123, A032279-A032288, A073020, A078925
bracelets, 3-colored, A005654, A005656, A027671*, A032240, A032294
bracelets, 4-colored, A032241, A032275*, A032295
bracelets, 5-colored, A032242, A032276*, A032296
bracelets, aperiodic, A001371*, A032294-A032296, A045628, A045633
bracelets, asymmetric, A032239*, A032240-A032242
bracelets, balanced, A005648*, A006079, A006840, A045628, A045633
bracelets, complements are equivalent, A000011*, A006080, A006840, A045633, A053656, A066313-A066316
bracelets, identity, see bracelets, asymmetric
bracelets, triangle, A052307*, A052308, A052309, A052310
bracelets: see also Lyndon words
bracelets: see also necklaces
bracelets: see also A005595, A007148, A027670, A054499

bracket function: A000748, A000749, A000750, A001659, A006090
brackets, ways to arrange: see parentheses, ways to arrange
braids, sequences related to :

braids: A054480*, A054761*, A000071, A007988, A007990, A007991, A007993, A007994, A007995

Braille: A079399, A072283
Bravais lattices: A256413*, A004030 (published incorrect version)
Brazilian numbers , sequences related to :

Brazilian numbers, A125134
Non-Brazilian numbers, A220570
Composite Brazilian numbers, A220571
Composite non-Brazilian numbers = Semiprimes non-Brazilian, A190300
Odd Brazilian numbers, A257521
Odd non-Brazilian numbers, A258165
Brazilian & Colombian: A333858, A336143, A336144, A336307
Brazilian primes constant or Decimal expansion of the sum of reciprocals of Brazilian primes, A306759
Brazilian semiprimes,A307507
Brazilian squares, A253260
Brazilian primes, A085104
Brazilian primes: 1 + p + p^2 + ... + p^k where p is prime, A023195
Brazilian primes: 1 + n + n^2 + ... + n^k, n > 1, k > 1 where n is not prime, A285017
Brazilian composites of the form 1 + b + b^2 + b^3 + ... + b^k, b > 1, k > 1, A325658
Palindromes in base 10 that are Brazilian, A325322
Palindromes in base 10 that are not Brazilian, A325323
Primes non-Brazilian, A220627
Repunit Brazilian numbers, A053696
Repdigit Brazilians in base 10, A288068
Super-Brazilian numbers, A287767
Numbers whose all divisors > 1 are Brazilian, A308851
Least k>2 such that (n^k-1)/(n-1) is Brazilian prime, A128164
Smallest Brazilian prime in base n, A285642
Smallest Brazilian composite in base n, A325659
Legal generalized repunit prime numbers, A179625
Brazilian & Colombian: A333858, A336143, A336144, A336307
Brazilian primes of form k^2+k+1 and corresponding bases k: A002383, A002384
Brazilian primes of form k^2+k+1 when base k is prime: A053183, A053182
Brazilian primes of form k^2+k+1 when base k is nonprime: A185632, A182253
Brazilian primes of form k^4+k^3+k^2+k+1 and corresponding bases k: A088548, A049409
Brazilian primes of form k^4+k^3+k^2+k+1 when base k is prime: A190527, A065509
Brazilian primes of form k^4+k^3+k^2+k+1 when base k is nonprime: A193366, A286094
Brazilian primes of form k^6+k^5+k^4+k^3+k^2+k+1 and corresponding bases k: A088550, A100330
Brazilian primes of form k^6+k^5+k^4+k^3+k^2+k+1 when base k is prime: A194257, A163268
Brazilian primes of form k^6+k^5+k^4+k^3+k^2+k+1 when base k is nonprime: A194194, A288939
Brazilian primes of form k^10+k^9+...+k^2+k+1 and corresponding bases k: A162861, A162862
Brazilian primes of form k^10+k^9+...+k^2+k+1 when base k is prime: A286301, A240693
Brazilian primes of form k^10+k^9+...+k^2+k+1 when base k is nonprime: A198244, A308238
Numbers of ways such that a number n is Brazilian or not = beta(n), A220136
Least positive integer that has exactly n representations as Brazilian number, A284758
The least positive integer that is a repdigit of length > 2 in exactly n bases, A290969
Smallest oblong number that is a repdigit of length > 2 in exactly n bases, A309193
Numbers highly Brazilian, A329383
Numbers highly Brazilian and highly composite, A279930
Numbers highly composite not highly Brazilian, A309039
Numbers highly Brazilian not highly composite, A309493
Brazilian numbers which have only one representation, A288783
Brazilian numbers which have exactly two representations, A290015
Brazilian numbers which have exactly three representations, A290016
Brazilian numbers which have exactly four representations, A290017
Brazilian numbers which have exactly five representations, A290018
Relation beta(n) = tau(n)/2 - 2, (= oblong numbers with beta"(n) = 0), A326378
Relation beta(n) = tau(n)/2 - 1, A326379
Relation beta(n) = tau(n)/2, A326380
Relation beta(n) = tau(n)/2 + 1, A326381
Relation beta(n) = tau(n)/2 + 2, A326382
Relation beta(n) = tau(n)/2 + 3, A326383
Relation beta(n) = tau(n)/2 + k, k >= 4, A326706
Relation beta(n) = tau(n)/2 - 1, non-oblong numbers with beta"(n) = 0, A326386
Relation beta(n) = tau(n)/2, non-oblong numbers with beta"(n) = 1, A326387
Relation beta(n) = tau(n)/2 + 1, non-oblong numbers with beta"(n) = 2, A326388
Relation beta(n) = tau(n)/2 + 2, non-oblong numbers with beta"(n) = 3, A326389
Relation beta(n) = tau(n)/2 + k, k >= 3, non-oblong numbers with beta"(n) = r, r >= 4, A326705
Relation beta(n) = tau(n)/2 -1, oblong numbers with beta"(n) = 1, A326384
Relation beta(n) = tau(n)/2, oblong numbers with beta"(n) = 2, A326385
Relation beta(n) = tau(n)/2 + k, k >= 1, oblong numbers with beta"(n) = r, r >= 3, A309062
Relation beta(n) = (tau(n)-3)/2, for squares, A326707
Relation beta(n) = (tau(n)-3)/2, non-Brazilian squares of primes, A326708
Relation beta(n) = (tau(n)-3)/2, squares of composites, A326709
Relation beta(n) = (tau(n)-1)/2, for squares, A326710

Brazilian Portuguese: see also Index entries for sequences related to number of letters in n
bricks , sequences related to :

bricks: A000472, A003697, A006291, A006292, A006293, A031173, A031174, A031175

bridge hands, sorting: A065603
brilliant numbers: A078972*, A085647
Brocard's problem (or Brocard-Ramanujan diophantine equation): A038202, A085692, A146968, A216071, A232802
Brun's constant: A065421, A005597, A038124
Buffon's needle: A060294*
building numbers from other numbers and the operations of addition, subtraction, etc: see under four 4's problem
Bulgarian solitaire: A037306, A037481, A123975, A225794, A226062*, A227451, A227752, A227753, A242424, A243070
bull (in graph theory): see A079577
Burnside's problem in group theory: A051576, A079682, A079683; also A004006, A116398
Busy Beaver problem , sequences related to :

Busy Beaver problem: A028444*, A004147*, A060843*, A052200, A333479
Busy Beaver problem: see also Turing machines

button, sewing on a, A192314*, A192332, A191563
B_2 sequences , sequences related to :

B_2 sequences: A005282, A010672, A011185, A025582

B_n lattice: coordination sequence for: see A022145


[ Aa | Ab | Al | Am | Ap | Ar | Ba | Be | Bi | Bl | Bo | Br | Ca | Ce | Ch | Cl | Coa | Coi | Com | Con | Cor | Cu | Cy | Da | De | Di | Do | Ea | Ed | El | Eu | Fa | Fe | Fi | Fo | Fu | Ga | Ge | Go | Gra | Gre | Ha | He | Ho | Ia | In | J | K | La | Lc | Li | Lo | Lu | M | Mag | Map | Mat | Me | Mo | Mu | N | Na | Ne | Ni | No | Nu | O | Pac | Par | Pas | Pea | Per | Ph | Poi | Pol | Pos | Pow | Pra | Pri | Pro | Ps | Qua | Que | Ra | Rea | Rel | Res | Ro | Ru | Sa | Se | Si | Sk | So | Sp | Sq | St | Su | Sw | Ta | Te | Th | To | Tra | Tri | Tu | U | V | Wa | We | Wi | X | Y | Z | 1 | 2 | 3 | 4 ]