login
A027671
Number of necklaces with n beads of 3 colors, allowing turning over.
16
1, 3, 6, 10, 21, 39, 92, 198, 498, 1219, 3210, 8418, 22913, 62415, 173088, 481598, 1351983, 3808083, 10781954, 30615354, 87230157, 249144711, 713387076, 2046856566, 5884491500, 16946569371, 48883660146, 141217160458, 408519019449, 1183289542815
OFFSET
0,2
COMMENTS
Number of bracelets of n beads using up to three different colors. - Robert A. Russell, Sep 24 2018
REFERENCES
J. L. Fisher, Application-Oriented Algebra (1977), ISBN 0-7002-2504-8, circa p. 215.
M. Gardner, "New Mathematical Diversions from Scientific American" (Simon and Schuster, New York, 1966), pp. 245-246.
LINKS
E. N. Gilbert and J. Riordan, Symmetry types of periodic sequences, Illinois J. Math., 5 (1961), 657-665.
F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc. [Cached copy, with permission, pdf format only]
M. Taniguchi, H. Du, and J. S. Lindsey, Enumeration of virtual libraries of combinatorial modular macrocyclic (bracelet, necklace) architectures and their linear counterparts, Journal of Chemical Information and Modeling, 53 (2013), 2203-2216.
R. M. Thompson and R. T. Downs, Systematic generation of all nonequivalent closest-packed stacking sequences of length N using group theory, Acta Cryst. B57 (2001), 766-771; B58 (2002), 153.
Eric Weisstein's World of Mathematics, Necklace.
FORMULA
G.f.: (1 - Sum_{n>=1} phi(n)*log(1 - 3*x^n)/n + (1+3*x+3*x^2)/(1-3*x^2))/2. - Herbert Kociemba, Nov 02 2016
For n > 0, a(n) = (k^floor((n+1)/2) + k^ceiling((n+1)/2))/4 + (1/(2*n))* Sum_{d|n} phi(d)*k^(n/d), where k=3 is the maximum number of colors. - Robert A. Russell, Sep 24 2018
a(0) = 1; a(n) = (k^floor((n+1)/2) + k^ceiling((n+1)/2))/4 + (1/(2*n))*Sum_{i=1..n} k^gcd(n,i), where k=3 is the maximum number of colors.
(See A075195 formulas.) - Richard L. Ollerton, May 04 2021
EXAMPLE
For n=2, the six bracelets are AA, AB, AC, BB, BC, and CC. - Robert A. Russell, Sep 24 2018
MATHEMATICA
Needs["Combinatorica`"]; Join[{1}, Table[CycleIndex[DihedralGroup[n], s]/.Table[s[i]->3, {i, 1, n}], {n, 1, 30}]] (* Geoffrey Critzer, Sep 29 2012 *)
Needs["Combinatorica`"]; Join[{1}, Table[NumberOfNecklaces[n, 3, Dihedral], {n, 30}]] (* T. D. Noe, Oct 02 2012 *)
mx=40; CoefficientList[Series[(1-Sum[ EulerPhi[n]*Log[1-3*x^n]/n, {n, mx}]+(1+3 x+3 x^2)/(1-3 x^2))/2, {x, 0, mx}], x] (* Herbert Kociemba, Nov 02 2016 *)
t[n_, k_] := (For[t1 = 0; d = 1, d <= n, d++, If[Mod[n, d] == 0, t1 = t1 + EulerPhi[d]*k^(n/d)]]; If[EvenQ[n], (t1 + (n/2)*(1+k)*k^(n/2))/(2*n), (t1 + n*k^((n+1)/2))/(2*n)]); a[0] = 1; a[n_] := t[n, 3]; Array[a, 30, 0] (* Jean-François Alcover, Nov 02 2017, after Maple code for A081720 *)
k=3; Prepend[Table[DivisorSum[n, EulerPhi[#] k^(n/#) &]/(2n) + (k^Floor[(n+1)/2] + k^Ceiling[(n+1)/2])/4, {n, 1, 30}], 1] (* Robert A. Russell, Sep 24 2018 *)
PROG
(PARI) a(n, k=3) = if(n==0, 1, (k^floor((n+1)/2) + k^ceil((n+1)/2))/4 + (1/(2*n))* sumdiv(n, d, eulerphi(d)*k^(n/d) ) );
vector(55, n, a(n-1)) \\ Joerg Arndt, Oct 20 2019
CROSSREFS
a(n) = A081720(n,3), n >= 3. - Wolfdieter Lang, Jun 03 2012
Column 3 of A051137.
a(n) = (A001867(n) + A182751(n+1)) / 2 = A278639(n) + A182751(n+1).
Equals A001867 - A278639.
Sequence in context: A299017 A136569 A061883 * A167617 A274018 A068149
KEYWORD
nonn,easy,nice,changed
AUTHOR
EXTENSIONS
More terms from Christian G. Bower
STATUS
approved