OFFSET
0,2
COMMENTS
Number of bracelets of n beads using up to three different colors. - Robert A. Russell, Sep 24 2018
REFERENCES
J. L. Fisher, Application-Oriented Algebra (1977), ISBN 0-7002-2504-8, circa p. 215.
M. Gardner, "New Mathematical Diversions from Scientific American" (Simon and Schuster, New York, 1966), pp. 245-246.
LINKS
T. D. Noe, Table of n, a(n) for n = 0..200
E. N. Gilbert and J. Riordan, Symmetry types of periodic sequences, Illinois J. Math., 5 (1961), 657-665.
F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc. [Cached copy, with permission, pdf format only]
M. Taniguchi, H. Du, and J. S. Lindsey, Enumeration of virtual libraries of combinatorial modular macrocyclic (bracelet, necklace) architectures and their linear counterparts, Journal of Chemical Information and Modeling, 53 (2013), 2203-2216.
R. M. Thompson and R. T. Downs, Systematic generation of all nonequivalent closest-packed stacking sequences of length N using group theory, Acta Cryst. B57 (2001), 766-771; B58 (2002), 153.
Eric Weisstein's World of Mathematics, Necklace.
FORMULA
G.f.: (1 - Sum_{n>=1} phi(n)*log(1 - 3*x^n)/n + (1+3*x+3*x^2)/(1-3*x^2))/2. - Herbert Kociemba, Nov 02 2016
For n > 0, a(n) = (k^floor((n+1)/2) + k^ceiling((n+1)/2))/4 + (1/(2*n))* Sum_{d|n} phi(d)*k^(n/d), where k=3 is the maximum number of colors. - Robert A. Russell, Sep 24 2018
a(0) = 1; a(n) = (k^floor((n+1)/2) + k^ceiling((n+1)/2))/4 + (1/(2*n))*Sum_{i=1..n} k^gcd(n,i), where k=3 is the maximum number of colors.
(See A075195 formulas.) - Richard L. Ollerton, May 04 2021
EXAMPLE
For n=2, the six bracelets are AA, AB, AC, BB, BC, and CC. - Robert A. Russell, Sep 24 2018
MATHEMATICA
Needs["Combinatorica`"]; Join[{1}, Table[CycleIndex[DihedralGroup[n], s]/.Table[s[i]->3, {i, 1, n}], {n, 1, 30}]] (* Geoffrey Critzer, Sep 29 2012 *)
Needs["Combinatorica`"]; Join[{1}, Table[NumberOfNecklaces[n, 3, Dihedral], {n, 30}]] (* T. D. Noe, Oct 02 2012 *)
mx=40; CoefficientList[Series[(1-Sum[ EulerPhi[n]*Log[1-3*x^n]/n, {n, mx}]+(1+3 x+3 x^2)/(1-3 x^2))/2, {x, 0, mx}], x] (* Herbert Kociemba, Nov 02 2016 *)
t[n_, k_] := (For[t1 = 0; d = 1, d <= n, d++, If[Mod[n, d] == 0, t1 = t1 + EulerPhi[d]*k^(n/d)]]; If[EvenQ[n], (t1 + (n/2)*(1+k)*k^(n/2))/(2*n), (t1 + n*k^((n+1)/2))/(2*n)]); a[0] = 1; a[n_] := t[n, 3]; Array[a, 30, 0] (* Jean-François Alcover, Nov 02 2017, after Maple code for A081720 *)
k=3; Prepend[Table[DivisorSum[n, EulerPhi[#] k^(n/#) &]/(2n) + (k^Floor[(n+1)/2] + k^Ceiling[(n+1)/2])/4, {n, 1, 30}], 1] (* Robert A. Russell, Sep 24 2018 *)
PROG
(PARI) a(n, k=3) = if(n==0, 1, (k^floor((n+1)/2) + k^ceil((n+1)/2))/4 + (1/(2*n))* sumdiv(n, d, eulerphi(d)*k^(n/d) ) );
vector(55, n, a(n-1)) \\ Joerg Arndt, Oct 20 2019
CROSSREFS
a(n) = A081720(n,3), n >= 3. - Wolfdieter Lang, Jun 03 2012
Column 3 of A051137.
KEYWORD
nonn,easy,nice,changed
AUTHOR
EXTENSIONS
More terms from Christian G. Bower
STATUS
approved