login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A073020
Triangle of T(n,m) = number of bracelets (necklaces than can be turned over) with m white beads and (2n-m) black ones, for 1<=m<=n.
2
1, 1, 2, 1, 3, 3, 1, 4, 5, 8, 1, 5, 8, 16, 16, 1, 6, 12, 29, 38, 50, 1, 7, 16, 47, 79, 126, 133, 1, 8, 21, 72, 147, 280, 375, 440, 1, 9, 27, 104, 252, 561, 912, 1282, 1387, 1, 10, 33, 145, 406, 1032, 1980, 3260, 4262, 4752, 1, 11, 40, 195, 621, 1782, 3936, 7440, 11410
OFFSET
1,3
COMMENTS
Left half of even rows of table A052307 with left column deleted.
FORMULA
(1/2)*(C(2*(n\2), m\2) +Sum (d|(2n, m) phi(d)C(2n/d, m/d) ) - (-1)^n if(even(n+m), 0, C(n-1, floor(m/2-1/2) ).
EXAMPLE
1; 1,2; 1,3,3; 1,4,5,8; 1,5,8,16,16; ...
MATHEMATICA
Table[Length[ Union[Last[Sort[Flatten[Table[{RotateLeft[ #, i], Reverse[RotateLeft[ #, i]]}, {i, 2k}], 1]]]& /@ Permutations[IntegerDigits[2^(2k-j) (2^j-1), 2]]] ], {k, 9}, {j, k}]
Table[( -(-1)^n If[EvenQ[m+n], 0, Binomial[n-1, Floor[(m-2)/2]] ]/2 + Fold[ #1+EulerPhi[ #2]Binomial[2n/#2, m/#2]/(2n)&, Binomial[2Floor[n/2], Floor[m/2]], Intersection[Divisors[2n], Divisors[m]]]/2), {n, 9}, {m, n}]
Table[ f[k, 2n], {n, 11}, {k, n}] // Flatten (* Robert G. Wilson v, Mar 29 2006 *)
CROSSREFS
Cf. A052307, A047996, A072506, A005648. Cf. A078925 for odd number of beads. Last term in each row gives A005648.
Sequence in context: A193376 A185095 A177888 * A090349 A157379 A212139
KEYWORD
nonn,tabl
AUTHOR
Wouter Meeussen, Aug 03 2002
STATUS
approved