

A078925


Triangle of T1(n,m) = number of bracelets (necklaces that can be turned over) with m white beads and (2n+1m) black ones, for 1<=m<=n.


1



1, 1, 2, 1, 3, 4, 1, 4, 7, 10, 1, 5, 10, 20, 26, 1, 6, 14, 35, 57, 76, 1, 7, 19, 56, 111, 185, 232, 1, 8, 24, 84, 196, 392, 600, 750, 1, 9, 30, 120, 324, 756, 1368, 2052, 2494, 1, 10, 37, 165, 507, 1353, 2829, 4950, 7105, 8524, 1, 11, 44, 220, 759, 2277, 5412, 10824
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

Left half of odd rows of table A052307 with left column deleted.


LINKS

Table of n, a(n) for n=1..63.
Index entries for sequences related to bracelets


EXAMPLE

1; 1, 2; 1, 3, 4; 1, 4, 7, 10; ...


MATHEMATICA

Table[ f[n, 2n + 1], {n, 11}] (* Robert G. Wilson v, Mar 29 2006 *)


CROSSREFS

Cf. A052307 for full table, A073020 for even number of beads. Last term in each row gives A007123.
Sequence in context: A210555 A008949 A076832 * A072506 A188236 A181851
Adjacent sequences: A078922 A078923 A078924 * A078926 A078927 A078928


KEYWORD

nonn,tabl


AUTHOR

Thomas Hartinger (hartinger_t(AT)web.de), Dec 15 2002


STATUS

approved



